36
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Book Chapter: not found
      Visual Heritage: Digital Approaches in Heritage Science 

      Visualising Animal Hard Tissues

      other

      Read this book at

      Buy book Bookmark
          There is no author summary for this book yet. Authors can add summaries to their books on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references17

          • Record: found
          • Abstract: found
          • Article: not found

          Animal origin of 13th-century uterine vellum revealed using noninvasive peptide fingerprinting.

          Tissue-thin parchment made it possible to produce the first pocket Bibles: Thousands were made in the 13th century. The source of this parchment, often called "uterine vellum," has been a long-standing controversy in codicology. Use of the Latin term abortivum in many sources has led some scholars to suggest that the skin of fetal calves or sheep was used. Others have argued that it would not be possible to sustain herds if so many pocket Bibles were produced from fetal skins, arguing instead for unexpected alternatives, such as rabbit. Here, we report a simple and objective technique using standard conservation treatments to identify the animal origin of parchment. The noninvasive method is a variant on zooarchaeology by mass spectrometry (ZooMS) peptide mass fingerprinting but extracts protein from the parchment surface by using an electrostatic charge generated by gentle rubbing of a PVC eraser on the membrane surface. Using this method, we analyzed 72 pocket Bibles originating in France, England, and Italy and 293 additional parchment samples that bracket this period. We found no evidence for the use of unexpected animals; however, we did identify the use of more than one mammal species in a single manuscript, consistent with the local availability of hides. These results suggest that ultrafine vellum does not necessarily derive from the use of abortive or newborn animals with ultrathin hides, but could equally well reflect a production process that allowed the skins of maturing animals of several species to be rendered into vellum of equal quality and fineness.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Structure of ivory.

            Profiles with all orientations have been used to visualize the 3D structure of ivory from tusks of elephant, mammoth, walrus, hippopotamus, pig (bush, boar, and warthog), sperm whale, killer whale, and narwhal. Polished, forming, fractured, aged, and stained surfaces were prepared for microscopy using epi-illumination. Tusks have a minor peripheral component, the cementum, a soft derivative of the enamel layer, and a main core of dentine=ivory. The dentine is composed of a matrix of particles 5-20 microm in diameter in a ground substance containing dentinal tubules about 5 microm in diameter with a center to center spacing of 10-20 microm. Dentinal tubules may be straight (most) or curly (pigs). The main findings relate to the way that dentinal tubules align in sheets to form microlaminae in the length of the tusk. Microlaminae are sheets of laterally aligned dentinal tubules. They are axial but may be radial (most), angled to the forming face (pigs and hippopotamus canines), or radial but helical (narwhals). Within the microlaminae the dentinal tubules may be radial, angled to the axis (whales, walrus, and pigs), or may change their orientation from one microlamina to the next in helicoids (canines of hippopotamuses, incisors of proboscidea). In the nonbanded, featureless ivories from the hippopotamus incisors, the dentinal tubules form radial microlamina from which the arrangements in other ivories can be derived. In the canines of hippopotamuses and incisors of proboscidea, the dentinal tubule orientation changes incrementally from one microlamina to the next in a helicoid, a stack of dentinal tubules that change their orientation by 180 degrees anticlockwise. Dentinal tubules having different orientations are laid down concurrently, not layer by layer as in most examples of helicoidal architecture (e.g., insect cuticle). In proboscidean ivory, the microlaminae are radial, normal to the banding of growth layers marking the plane of deposition. They form radial segments with each 180 degrees turn in the orientation of their constituent dentinal tubules. Below the cementum they are almost complete 180 degrees helicoids, but nearer to the core they become narrower with the loss of radially oriented dentinal tubules. These truncated helicoidal patterns appear in longitudinal profile as VVVV feather patterns rather than intersection intersection intersection intersection, each V or intersection being the side view of a partial or complete helicoid. The Schreger pattern in proboscidean ivory consists of these helicoids divided tangentially into columns in the length of the tusk. Narwhals have the most abundant matrix particles with their radial/helical dentinal tubules having a twist opposite to that in the cementum.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Advances in identifying archaeological traces of horn and other keratinous hard tissues

                Bookmark

                Author and book information

                Book Chapter
                2022
                April 06 2022
                : 179-202
                10.1007/978-3-030-77028-0_10
                736359df-5ea0-40a2-a378-e8a96b9b4879
                History

                Comments

                Comment on this book

                Book chapters

                Similar content4,008