14
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Book Chapter: not found
      Biological Interactions on Materials Surfaces: Understanding and Controlling Protein, Cell, and Tissue Responses 

      Atomic Force Microscopy Methods for Characterizing Protein Interactions with Microphase-Separated Polyurethane Biomaterials

      other
      , , ,
      Springer US

      Read this book at

      Buy book Bookmark
          There is no author summary for this book yet. Authors can add summaries to their books on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references121

          • Record: found
          • Abstract: found
          • Article: not found

          Dynamic strength of molecular adhesion bonds.

          In biology, molecular linkages at, within, and beneath cell interfaces arise mainly from weak noncovalent interactions. These bonds will fail under any level of pulling force if held for sufficient time. Thus, when tested with ultrasensitive force probes, we expect cohesive material strength and strength of adhesion at interfaces to be time- and loading rate-dependent properties. To examine what can be learned from measurements of bond strength, we have extended Kramers' theory for reaction kinetics in liquids to bond dissociation under force and tested the predictions by smart Monte Carlo (Brownian dynamics) simulations of bond rupture. By definition, bond strength is the force that produces the most frequent failure in repeated tests of breakage, i.e., the peak in the distribution of rupture forces. As verified by the simulations, theory shows that bond strength progresses through three dynamic regimes of loading rate. First, bond strength emerges at a critical rate of loading (> or = 0) at which spontaneous dissociation is just frequent enough to keep the distribution peak at zero force. In the slow-loading regime immediately above the critical rate, strength grows as a weak power of loading rate and reflects initial coupling of force to the bonding potential. At higher rates, there is crossover to a fast regime in which strength continues to increase as the logarithm of the loading rate over many decades independent of the type of attraction. Finally, at ultrafast loading rates approaching the domain of molecular dynamics simulations, the bonding potential is quickly overwhelmed by the rapidly increasing force, so that only naked frictional drag on the structure remains to retard separation. Hence, to expose the energy landscape that governs bond strength, molecular adhesion forces must be examined over an enormous span of time scales. However, a significant gap exists between the time domain of force measurements in the laboratory and the extremely fast scale of molecular motions. Using results from a simulation of biotin-avidin bonds (Izrailev, S., S. Stepaniants, M. Balsera, Y. Oono, and K. Schulten. 1997. Molecular dynamics study of unbinding of the avidin-biotin complex. Biophys. J., this issue), we describe how Brownian dynamics can help bridge the gap between molecular dynamics and probe tests.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Structure and reactivity of water at biomaterial surfaces.

            Molecular self association in liquids is a physical process that can dominate cohesion (interfacial tension) and miscibility. In water, self association is a powerful organizational force leading to a three-dimensional hydrogen-bonded network (water structure). Localized perturbations in the chemical potential of water as by, for example, contact with a solid surface, induces compensating changes in water structure that can be sensed tens of nanometers from the point of origin using the surface force apparatus (SFA) and ancillary techniques. These instruments reveal attractive or repulsive forces between opposing surfaces immersed in water, over and above that anticipated by continuum theory (DLVO), that are attributed to a variable density (partial molar volume) of a more-or-less ordered water structure, depending on the water wettability (surface energy) of the water-contacting surfaces. Water structure at surfaces is thus found to be a manifestation of hydrophobicity and, while mechanistic/theoretical interpretation of experimental results remain the subject of some debate in the literature, convergence of experimental observations permit, for the first time, quantitative definition of the relative terms 'hydrophobic' and 'hydrophilic'. In particular, long-range attractive forces are detected only between surfaces exhibiting a water contact angle theta > 65 degrees (herein defined as hydrophobic surfaces with pure water adhesion tension tau O = gamma O cos theta 30 dyn/cm). These findings suggest at least two distinct kinds of water structure and reactivity: a relatively less-dense water region against hydrophobic surfaces with an open hydrogen-bonded network and a relatively more-dense water region against hydrophilic surfaces with a collapsed hydrogen-bonded network. Importantly, membrane and SFA studies reveal a discrimination between biologically-important ions that preferentially solubilizes divalent ions in more-dense water regions relative to less-dense water regions in which monovalent ions are enriched. Thus, the compelling conclusion to be drawn from the collective scientific evidence gleaned from over a century of experimental and theoretical investigation is that solvent properties of water within the interphase separating a solid surface from bulk water solution vary with contacting surface chemistry. This interphase can extend tens of nanometers from a water-contacting surface due to a propagation of differences in self association between vicinal water and bulk-phase water. Physicochemical properties of interfacial water profoundly influence the biological response to materials in a surprisingly straightforward manner when key measures of biological activity sensitive to interfacial phenomena are scaled against water adhesion tension tau O of contacting surfaces. As examples, hydrophobic surfaces (tau O 30 dyn/cm) do not support adsorption because this mechanism is energetically unfavorable. Protein-adsorbing hydrophobic surfaces are inefficient contact activators of the blood coagulation cascade whereas protein-repellent hydrophilic surfaces are efficient activators of blood coagulation. Mammalian cell attachment is a process distinct from protein adsorption that occurs efficiently to hydrophilic surfaces but inefficiently to hydrophobic surfaces. (ABSTRACT TRUNCATED)
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Models for the specific adhesion of cells to cells

              G. Bell (1978)
                Bookmark

                Author and book information

                Book Chapter
                2009
                May 19 2009
                : 43-67
                10.1007/978-0-387-98161-1_3
                3deadf64-96e5-4d98-9d8b-1f9340cee311
                History

                Comments

                Comment on this book

                Book chapters

                Similar content1,454