9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Anthropic disturbances impact the soil microbial network structure and stability to a greater extent than natural disturbances in an arid ecosystem.

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Growing pressure from climate change and agricultural land use is destabilizing soil microbial community interactions. Yet little is known about microbial community resistance and adaptation to disturbances over time. This hampers our ability to determine the recovery latency of microbial interactions after disturbances, with fundamental implications for ecosystem functioning and conservation measures. Here we examined the response of bacterial and fungal community networks in the rhizosphere of Haloxylon salicornicum (Moq.) Bunge ex Boiss. over the course of soil disturbances resulting from a history of different hydric constraints involving flooding-drought successions. An anthropic disturbance related to past agricultural use, with frequent successions of flooding and drought, was compared to a natural disturbance, i.e., an evaporation basin, with yearly flooding-drought successions. The anthropic disturbance resulted in a specific microbial network topology characterized by lower modularity and stability, reflecting the legacy of past agricultural use on soil microbiome. In contrast, the natural disturbance resulted in a network topology and stability close to those of natural environments despite the lower alpha diversity, and a different community composition compared to that of the other sites. These results highlighted the temporality in the response of the microbial community structure to disturbance, where long-term adaptation to flooding-drought successions lead to a higher stability than disturbances occurring over a shorter timescale.

          Related collections

          Author and article information

          Journal
          Sci Total Environ
          The Science of the total environment
          Elsevier BV
          1879-1026
          0048-9697
          Jan 10 2024
          : 907
          Affiliations
          [1 ] LSTM, Univ Montpellier, CIRAD, INRAE, IRD, SupAgro, UMR082 LSTM, 34398 Montpellier Cedex 5, France. Electronic address: kenji.maurice@gmail.com.
          [2 ] ISYEB, Muséum national d'Histoire naturelle, CNRS, EPHE-PSL, Sorbonne Université, 57 rue Cuvier, CP39, 75005 Paris, France.
          [3 ] Department of Research and Development, VALORHIZ, 1900, Boulevard de la Lironde, PSIII, Parc Scientifique Agropolis, F34980 Montferrier sur Lez, France.
          [4 ] LSTM, Univ Montpellier, CIRAD, INRAE, IRD, SupAgro, UMR082 LSTM, 34398 Montpellier Cedex 5, France.
          [5 ] Department of Research and Development, VALORHIZ, 1900, Boulevard de la Lironde, PSIII, Parc Scientifique Agropolis, F34980 Montferrier sur Lez, France; ASARI, Mohammed VI Polytechnic University, Lot 660, Hay Moulay Rachid Ben Guerir, 43150, Morocco.
          [6 ] ISYEB, Muséum national d'Histoire naturelle, CNRS, EPHE-PSL, Sorbonne Université, 57 rue Cuvier, CP39, 75005 Paris, France; Department of Plant Taxonomy and Nature Conservation, University of Gdańsk, ul. Wita Stwosza 59, 80-308 Gdańsk, Poland; Institut Universitaire de France, Paris, France.
          Article
          S0048-9697(23)06596-8
          10.1016/j.scitotenv.2023.167969
          37914121
          02549d7f-f08a-4f01-9e90-13a70ea0c4d5
          History

          Disturbance,Soil microbiome,Co-occurrence network,Stability

          Comments

          Comment on this article

          scite_
          0
          0
          0
          0
          Smart Citations
          0
          0
          0
          0
          Citing PublicationsSupportingMentioningContrasting
          View Citations

          See how this article has been cited at scite.ai

          scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

          Similar content125

          Cited by4