Average rating: | Rated 3.5 of 5. |
Level of importance: | Rated 3 of 5. |
Level of validity: | Rated 4 of 5. |
Level of completeness: | Rated 4 of 5. |
Level of comprehensibility: | Rated 3 of 5. |
Competing interests: | None |
Using new data obtained from UC Berkeley and permutation methodologies, this article adopts a rigorous nonparametric approach to test whether female candidates are generally asked more (different types of) questions during academic job talks. In contrast to a similar paper (by Blair-Loy et al.) that employs a parametric, possibly unfounded ZINB model to study the same problem, the present paper finds no strong evidence suggesting that women candidates get asked more questions than their male counterparts; in particular, even when the present authors apply a randomization-calibrated test based on the ZINB model, they still can't find strong evidence.
I find this paper quite stimulating, and it touches upon the area of permutation tests which perhaps many main-stream statisticians are not too familiar with these days (in my humble opinion); as such I have picked up the book by Pesarin and Salmaso (which the authors' method is based on ) to have a quick read. While I appreciate the model-free approach taken by the authors, I would like to play devil's advocate here and point out the possibility that the power of the randomization test employed in this paper may simply not be high enough to detect the difference in median between women and men. For instance, there could be combining functions other than the Fisher Omnibus one to choose from, and the optimal permutation test is generally hard to nail down (p.107 in Pesarin and Salmaso). Another limitation of the current study, as also pointed out by the authors, is that the dataset is not large enough to stratify by year to allow for more fine-grained analysis.
Minor comments:
1. The use of certain terminology could have been more consistent to increase readability, e.g. "overall talks" vs "entire talks" (p.8 and p.9).
2. Table captions could have been extended to describe the content of the table better, e.g. In Table 1, it wasn't apparent to me until later on seen in Section 5.2 that "median events" refers to median number of audience utterances.