Average rating: | Rated 4 of 5. |
Level of importance: | Rated 4 of 5. |
Level of validity: | Rated 4 of 5. |
Level of completeness: | Rated 4 of 5. |
Level of comprehensibility: | Rated 4 of 5. |
Competing interests: | None |
Reviewed for PREreview (https://doi.org/10.5281/zenodo.7017120)
Overview
The paper contributes to a substantial literature on fundamentals of deformation and hardening of crystalline metals. The brief literature review focuses towards characterisation and understanding of self-organised patterning in the dislocation arrangement and the possibility that this is fractal in nature.
The experiments centre on a series of Cu single crystals deformed to different maximum stresses and resulting plastic strains (from ~2% to ~11%). A variety of methods are used to characterise dislocation sub-structures and internal/residual elastic strains (and from these stresses) within the deformed crystals in the unloaded state. Methods include X-ray diffraction peak profile analysis, HR-EBSD mapping of stress and GND density distributions, and some TEM diffraction contrast imaging limited to one sample. The samples are inherently soft and difficult to work with and the clean data presented points towards careful experimentation.
A strength of the work is bringing multiple advanced techniques to bear on the same sample set. The majority of the conclusions confirm findings or ideas that are already in the literature but the use of GND density maps from HR-EBSD analysis to probe fractal nature of dislocation cells is new. The work is an interesting contribution to understanding of dislocation patterning during deformation.
Reading the preprint provoked the following comments and questions some of which might be useful to the authors.
Main Points
Minor Points