8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Book Chapter: not found
      Ribosome Profiling : Methods and Protocols 

      Brown Adipose Tissue: A Short Historical Perspective

      other
      Springer US

      Read this book at

      Buy book Bookmark
          There is no author summary for this book yet. Authors can add summaries to their books on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references97

          • Record: found
          • Abstract: found
          • Article: not found

          Brown adipose tissue: function and physiological significance.

          The function of brown adipose tissue is to transfer energy from food into heat; physiologically, both the heat produced and the resulting decrease in metabolic efficiency can be of significance. Both the acute activity of the tissue, i.e., the heat production, and the recruitment process in the tissue (that results in a higher thermogenic capacity) are under the control of norepinephrine released from sympathetic nerves. In thermoregulatory thermogenesis, brown adipose tissue is essential for classical nonshivering thermogenesis (this phenomenon does not exist in the absence of functional brown adipose tissue), as well as for the cold acclimation-recruited norepinephrine-induced thermogenesis. Heat production from brown adipose tissue is activated whenever the organism is in need of extra heat, e.g., postnatally, during entry into a febrile state, and during arousal from hibernation, and the rate of thermogenesis is centrally controlled via a pathway initiated in the hypothalamus. Feeding as such also results in activation of brown adipose tissue; a series of diets, apparently all characterized by being low in protein, result in a leptin-dependent recruitment of the tissue; this metaboloregulatory thermogenesis is also under hypothalamic control. When the tissue is active, high amounts of lipids and glucose are combusted in the tissue. The development of brown adipose tissue with its characteristic protein, uncoupling protein-1 (UCP1), was probably determinative for the evolutionary success of mammals, as its thermogenesis enhances neonatal survival and allows for active life even in cold surroundings.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Obesity is associated with macrophage accumulation in adipose tissue

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Identification and Importance of Brown Adipose Tissue in Adult Humans

              Obesity results from an imbalance between energy intake and expenditure. In rodents and newborn humans, brown adipose tissue helps regulate energy expenditure by thermogenesis mediated by the expression of uncoupling protein 1 (UCP1), but brown adipose tissue has been considered to have no physiologic relevance in adult humans. We analyzed 3640 consecutive (18)F-fluorodeoxyglucose ((18)F-FDG) positron-emission tomographic and computed tomographic (PET-CT) scans performed for various diagnostic reasons in 1972 patients for the presence of substantial depots of putative brown adipose tissue. Such depots were defined as collections of tissue that were more than 4 mm in diameter, had the density of adipose tissue according to CT, and had maximal standardized uptake values of (18)F-FDG of at least 2.0 g per milliliter, indicating high metabolic activity. Clinical indexes were recorded and compared with those of date-matched controls. Immunostaining for UCP1 was performed on biopsy specimens from the neck and supraclavicular regions in patients undergoing surgery. Substantial depots of brown adipose tissue were identified by PET-CT in a region extending from the anterior neck to the thorax. Tissue from this region had UCP1-immunopositive, multilocular adipocytes indicating brown adipose tissue. Positive scans were seen in 76 of 1013 women (7.5%) and 30 of 959 men (3.1%), corresponding to a female:male ratio greater than 2:1 (P<0.001). Women also had a greater mass of brown adipose tissue and higher (18)F-FDG uptake activity. The probability of the detection of brown adipose tissue was inversely correlated with years of age (P<0.001), outdoor temperature at the time of the scan (P=0.02), beta-blocker use (P<0.001), and among older patients, body-mass index (P=0.007). Defined regions of functionally active brown adipose tissue are present in adult humans, are more frequent in women than in men, and may be quantified noninvasively with the use of (18)F-FDG PET-CT. Most important, the amount of brown adipose tissue is inversely correlated with body-mass index, especially in older people, suggesting a potential role of brown adipose tissue in adult human metabolism. 2009 Massachusetts Medical Society
                Bookmark

                Author and book information

                Book Chapter
                2022
                February 15 2022
                : 1-18
                10.1007/978-1-0716-2087-8_1
                db78fa61-a875-478d-9e04-2e03424671aa
                History

                Comments

                Comment on this book

                Book chapters

                Similar content1,616

                Cited by1