1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Book Chapter: not found
      Difference Gel Electrophoresis : Methods and Protocols 

      Protein Digestion for 2D-DIGE Analysis

      other
      ,
      Springer US

      Read this book at

      Buy book Bookmark
          There is no author summary for this book yet. Authors can add summaries to their books on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references49

          • Record: found
          • Abstract: found
          • Article: not found

          In-gel digestion for mass spectrometric characterization of proteins and proteomes.

          In-gel digestion of proteins isolated by gel electrophoresis is a cornerstone of mass spectrometry (MS)-driven proteomics. The 10-year-old recipe by Shevchenko et al. has been optimized to increase the speed and sensitivity of analysis. The protocol is for the in-gel digestion of both silver and Coomassie-stained protein spots or bands and can be followed by MALDI-MS or LC-MS/MS analysis to identify proteins at sensitivities better than a few femtomoles of protein starting material.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            High resolution two-dimensional electrophoresis of proteins.

            A technique has been developed for the separation of proteins by two-dimensional polyacrylamide gel electrophoresis. Due to its resolution and sensitivity, this technique is a powerful tool for the analysis and detection of proteins from complex biological sources. Proteins are separated according to isoelectric point by isoelectric focusing in the first dimension, and according to molecular weight by sodium dodecyl sulfate electrophoresis in the second dimension. Since these two parameters are unrelated, it is possible to obtain an almost uniform distribution of protein spots across a two-diminsional gel. This technique has resolved 1100 different components from Escherichia coli and should be capable of resolving a maximum of 5000 proteins. A protein containing as little as one disintegration per min of either 14C or 35S can be detected by autoradiography. A protein which constitutes 10 minus 4 to 10 minus 5% of the total protein can be detected and quantified by autoradiography. The reproducibility of the separation is sufficient to permit each spot on one separation to be matched with a spot on a different separation. This technique provides a method for estimation (at the described sensitivities) of the number of proteins made by any biological system. This system can resolve proteins differing in a single charge and consequently can be used in the analysis of in vivo modifications resulting in a change in charge. Proteins whose charge is changed by missense mutations can be identified. A detailed description of the methods as well as the characteristics of this system are presented.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Difference gel electrophoresis: a single gel method for detecting changes in protein extracts.

              We describe a modification of two-dimensional (2-D) polyacrylamide gel electrophoresis that requires only a single gel to reproducibly detect differences between two protein samples. This was accomplished by fluorescently tagging the two samples with two different dyes, running them on the same 2-D gel, post-run fluorescence imaging of the gel into two images, and superimposing the images. The amine reactive dyes were designed to insure that proteins common to both samples have the same relative mobility regardless of the dye used to tag them. Thus, this technique, called difference gel electrophoresis (DIGE), circumvents the need to compare several 2-D gels. DIGE is reproducible, sensitive, and can detect an exogenous difference between two Drosophila embryo extracts at nanogram levels. Moreover, an inducible protein from E. coli was detected after 15 min of induction and identified using DIGE preparatively.
                Bookmark

                Author and book information

                Contributors
                (View ORCID Profile)
                Book Chapter
                2023
                November 16 2022
                : 339-349
                10.1007/978-1-0716-2831-7_23
                c9050c26-4ca1-4b15-b008-360d39b274ab
                History

                Comments

                Comment on this book

                Book chapters

                Similar content3,271

                Cited by1