30
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Book Chapter: not found
      Plants and Phytomolecules for Immunomodulation : Recent Trends and Advances 

      Immunostimulant Properties of Some Commonly Used Indian Spices and Herbs with Special Reference to Region-Specific Cuisines

      other

      Read this book at

      Buy book Bookmark
          There is no author summary for this book yet. Authors can add summaries to their books on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references139

          • Record: found
          • Abstract: found
          • Article: not found

          Role of the microbiota in immunity and inflammation.

          The microbiota plays a fundamental role on the induction, training, and function of the host immune system. In return, the immune system has largely evolved as a means to maintain the symbiotic relationship of the host with these highly diverse and evolving microbes. When operating optimally, this immune system-microbiota alliance allows the induction of protective responses to pathogens and the maintenance of regulatory pathways involved in the maintenance of tolerance to innocuous antigens. However, in high-income countries, overuse of antibiotics, changes in diet, and elimination of constitutive partners, such as nematodes, may have selected for a microbiota that lack the resilience and diversity required to establish balanced immune responses. This phenomenon is proposed to account for some of the dramatic rise in autoimmune and inflammatory disorders in parts of the world where our symbiotic relationship with the microbiota has been the most affected. Copyright © 2014 Elsevier Inc. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Innate immunity of fish (overview).

            The innate immune system is the only defence weapon of invertebrates and a fundamental defence mechanism of fish. The innate system also plays an instructive role in the acquired immune response and homeostasis and is therefore equally important in higher vertebrates. The innate system's recognition of non-self and danger signals is served by a limited number of germ-line encoded pattern recognition receptors/proteins, which recognise pathogen associated molecular patterns like bacterial and fungal glycoproteins and lipopolysaccharides and intracellular components released through injury or infection. The innate immune system is divided into physical barriers, cellular and humoral components. Humoral parameters include growth inhibitors, various lytic enzymes and components of the complement pathways, agglutinins and precipitins (opsonins, primarily lectins), natural antibodies, cytokines, chemokines and antibacterial peptides. Several external and internal factors can influence the activity of innate immune parameters. Temperature changes, handling and crowding stress can have suppressive effects on innate parameters, whereas several food additives and immunostimulants can enhance different innate factors. There is limited data available about the ontogenic development of the innate immunological system in fish. Active phagocytes, complement components and enzyme activity, like lysozyme and cathepsins, are present early in the development, before or soon after hatching.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A functionally specialized population of mucosal CD103+ DCs induces Foxp3+ regulatory T cells via a TGF-β– and retinoic acid–dependent mechanism

              Foxp3+ regulatory T (T reg) cells play a key role in controlling immune pathological re actions. Many develop their regulatory activity in the thymus, but there is also evidence for development of Foxp3+ T reg cells from naive precursors in the periphery. Recent studies have shown that transforming growth factor (TGF)-β can promote T reg cell development in culture, but little is known about the cellular and molecular mechanisms that mediate this pathway under more physiological conditions. Here, we show that after antigen activation in the intestine, naive T cells acquire expression of Foxp3. Moreover, we identify a population of CD103+ mesenteric lymph node dendritic cells (DCs) that induce the devel opment of Foxp3+ T reg cells. Importantly, promotion of T reg cell responses by CD103+ DCs is dependent on TGF-β and the dietary metabolite, retinoic acid (RA). These results newly identify RA as a cofactor in T reg cell generation, providing a mechanism via which functionally specialized gut-associated lymphoid tissue DCs can extend the repertoire of T reg cells focused on the intestine.
                Bookmark

                Author and book information

                Book Chapter
                2022
                August 31 2022
                : 191-249
                10.1007/978-981-16-8117-2_8
                ad92e325-330a-45f0-ba1c-5a7be5856df6
                History

                Comments

                Comment on this book

                Book chapters

                Similar content1,984