19
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Book Chapter: not found
      First Complex Systems Digital Campus World E-Conference 2015 

      Software is Not Fragile

      other
      ,
      Springer International Publishing

      Read this book at

      Buy book Bookmark
          There is no author summary for this book yet. Authors can add summaries to their books on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references23

          • Record: found
          • Abstract: found
          • Article: not found

          Fast gapped-read alignment with Bowtie 2.

          As the rate of sequencing increases, greater throughput is demanded from read aligners. The full-text minute index is often used to make alignment very fast and memory-efficient, but the approach is ill-suited to finding longer, gapped alignments. Bowtie 2 combines the strengths of the full-text minute index with the flexibility and speed of hardware-accelerated dynamic programming algorithms to achieve a combination of high speed, sensitivity and accuracy.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Fast and accurate long-read alignment with Burrows–Wheeler transform

            Motivation: Many programs for aligning short sequencing reads to a reference genome have been developed in the last 2 years. Most of them are very efficient for short reads but inefficient or not applicable for reads >200 bp because the algorithms are heavily and specifically tuned for short queries with low sequencing error rate. However, some sequencing platforms already produce longer reads and others are expected to become available soon. For longer reads, hashing-based software such as BLAT and SSAHA2 remain the only choices. Nonetheless, these methods are substantially slower than short-read aligners in terms of aligned bases per unit time. Results: We designed and implemented a new algorithm, Burrows-Wheeler Aligner's Smith-Waterman Alignment (BWA-SW), to align long sequences up to 1 Mb against a large sequence database (e.g. the human genome) with a few gigabytes of memory. The algorithm is as accurate as SSAHA2, more accurate than BLAT, and is several to tens of times faster than both. Availability: http://bio-bwa.sourceforge.net Contact: rd@sanger.ac.uk
              Bookmark
              • Record: found
              • Abstract: not found
              • Book: not found

              Adaptation in Natural and Artificial Systems

                Bookmark

                Author and book information

                Book Chapter
                2017
                December 26 2016
                : 203-211
                10.1007/978-3-319-45901-1_24
                a8c2ce2c-d416-4444-8a89-c4a13310e59d
                History

                Comments

                Comment on this book