5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Book Chapter: not found
      Fungi in Extreme Environments: Ecological Role and Biotechnological Significance 

      Ecology of Thermophilic Fungi

      other
      ,
      Springer International Publishing

      Read this book at

      Buy book Bookmark
          There is no author summary for this book yet. Authors can add summaries to their books on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references102

          • Record: found
          • Abstract: found
          • Article: not found

          Hyperthermophilic enzymes: sources, uses, and molecular mechanisms for thermostability.

          Enzymes synthesized by hyperthermophiles (bacteria and archaea with optimal growth temperatures of > 80 degrees C), also called hyperthermophilic enzymes, are typically thermostable (i.e., resistant to irreversible inactivation at high temperatures) and are optimally active at high temperatures. These enzymes share the same catalytic mechanisms with their mesophilic counterparts. When cloned and expressed in mesophilic hosts, hyperthermophilic enzymes usually retain their thermal properties, indicating that these properties are genetically encoded. Sequence alignments, amino acid content comparisons, crystal structure comparisons, and mutagenesis experiments indicate that hyperthermophilic enzymes are, indeed, very similar to their mesophilic homologues. No single mechanism is responsible for the remarkable stability of hyperthermophilic enzymes. Increased thermostability must be found, instead, in a small number of highly specific alterations that often do not obey any obvious traffic rules. After briefly discussing the diversity of hyperthermophilic organisms, this review concentrates on the remarkable thermostability of their enzymes. The biochemical and molecular properties of hyperthermophilic enzymes are described. Mechanisms responsible for protein inactivation are reviewed. The molecular mechanisms involved in protein thermostabilization are discussed, including ion pairs, hydrogen bonds, hydrophobic interactions, disulfide bridges, packing, decrease of the entropy of unfolding, and intersubunit interactions. Finally, current uses and potential applications of thermophilic and hyperthermophilic enzymes as research reagents and as catalysts for industrial processes are described.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Ethanol from lignocellulosic biomass: techno-economic performance in short-, middle- and long-term

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Extremophiles as a source of novel enzymes for industrial application.

              Extremophilic microorganisms are adapted to survive in ecological niches such as at high temperatures, extremes of pH, high salt concentrations and high pressure. These microorganisms produce unique biocatalysts that function under extreme conditions comparable to those prevailing in various industrial processes. Some of the enzymes from extremophiles have already been purified and their genes successfully cloned in mesophilic hosts. In this review we will briefly discuss the biotechnological significance of extreme thermophilic (optimal growth 70-80 degrees C) and hyperthermophilic (optimal growth 85-100 degrees C) archaea and bacteria. In particular, we will focus on selected extracellular-polymer-degrading enzymes, such as amylases, pullulanases, cyclodextrin glycosyltransferases, cellulases, xylanases, chitinases, proteinases and other enzymes such as esterases, glucose isomerases, alcohol dehydrogenases and DNA-modifying enzymes with potential use in food, chemical and pharmaceutical industries and in environmental biotechnology.
                Bookmark

                Author and book information

                Contributors
                (View ORCID Profile)
                Book Chapter
                2019
                July 23 2019
                : 39-57
                10.1007/978-3-030-19030-9_3
                870f8537-8a40-4138-96cf-98ecdf77b97e
                History

                Comments

                Comment on this book

                Book chapters

                Similar content2,211

                Cited by5