0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Book Chapter: not found
      Handbook of Neurochemistry 

      The Cerebrospinal Fluid

      other
      Springer US

      Read this book at

      Buy book Bookmark
          There is no author summary for this book yet. Authors can add summaries to their books on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references90

          • Record: found
          • Abstract: found
          • Article: not found

          JUNCTIONAL COMPLEXES IN VARIOUS EPITHELIA

          The epithelia of a number of glands and cavitary organs of the rat and guinea pig have been surveyed, and in all cases investigated, a characteristic tripartite junctional complex has been found between adjacent cells. Although the complex differs in precise arrangement from one organ to another, it has been regularly encountered in the mucosal epithelia of the stomach, intestine, gall bladder, uterus, and oviduct; in the glandular epithelia of the liver, pancreas, parotid, stomach, and thyroid; in the epithelia of pancreatic, hepatic, and salivary ducts; and finally, between the epithelial cells of the nephron (proximal and distal convolution, collecting ducts). The elements of the complex, identified as zonula occludens (tight junction), zonula adhaerens (intermediary junction), and macula adhaerens (desmosome), occupy a juxtaluminal position and succeed each other in the order given in an apical-basal direction. The zonula occludens (tight junction) is characterized by fusion of the adjacent cell membranes resulting in obliteration of the intercellular space over variable distances. Within the obliterated zone, the dense outer leaflets of the adjoining cell membranes converge to form a single intermediate line. A diffuse band of dense cytoplasmic material is often associated with this junction, but its development varies from one epithelium to another. The zonula adhaerens (intermediate junction) is characterized by the presence of an intercellular space (∼200 A) occupied by homogeneous, apparently amorphous material of low density; by strict parallelism of the adjoining cell membranes over distances of 0.2 to 0.5 µ; and by conspicuous bands of dense material located in the subjacent cytoplasmic matrix. The desmosome or macula adhaerens is also characterized by the presence of an intercellular space (∼240 A) which, in this case, contains a central disc of dense material; by discrete cytoplasmic plaques disposed parallel to the inner leaflet of each cell membrane; and by the presence of bundles of cytoplasmic fibrils converging on the plaques. The zonula occludens appears to form a continuous belt-like attachment, whereas the desmosome is a discontinuous, button-like structure. The zomula adhaerens is continuous in most epithelia but discontinuous in some. Observations made during experimental hemoglobinuria in rats showed that the hemoglobin, which undergoes enough concentration in the nephron lumina to act as an electron-opaque mass tracer, does not penetrate the intercellular spaces beyond the zonula occludens. Similar observations were made in pancreatic acini and ducts where discharged zymogen served as a mass tracer. Hence the tight junction is impervious to concentrated protein solutions and appears to function as a diffusion barrier or "seal." The desmosome and probably also the zonula adhaerens may represent intercellular attachment devices.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            FINE STRUCTURAL LOCALIZATION OF A BLOOD-BRAIN BARRIER TO EXOGENOUS PEROXIDASE

            Horseradish peroxidase was administered to mice by intravenous injection, and its distribution in cerebral cortex studied with a recently available technique for localizing peroxidase with the electron microscope. Brains were fixed by either immersion or vascular perfusion 10–60 min after administration of various doses of peroxidase. Exogenous peroxidase was localized in the lumina of blood vessels and in some micropinocytotic vesicles within endothelial cells; none was found beyond the vascular endothelium. Micropinocytotic vesicles were few in number and did not appear to transport peroxidase while tight junctions between endothelial cells were probably responsible for preventing its intercellular passage. Our findings therefore localize, at a fine structural level, a "barrier" to the passage of peroxidase at the endothelium of vessels in the cerebral cortex. The significance of these findings is discussed, particularly with reference to a recent study in which similar techniques were applied to capillaries in heart and skeletal muscle.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Secretion of cerebrospinal fluid by the ventricular ependyma of the rabbit.

                Bookmark

                Author and book information

                Book Chapter
                1969
                : 23-48
                10.1007/978-1-4899-7321-4_3
                867147fd-4913-49da-b209-0c93eaa4a874
                History

                Comments

                Comment on this book

                Book chapters

                Similar content804

                Cited by5