10
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Book Chapter: found
      Massively Parallel Evolutionary Computation on GPGPUs 

      Large-Scale Bioinformatics Data Mining with Parallel Genetic Programming on Graphics Processing Units

      other
      Springer Berlin Heidelberg

      Read this book at

      Buy book Bookmark
          There is no author summary for this book yet. Authors can add summaries to their books on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references93

          • Record: found
          • Abstract: found
          • Article: not found

          RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models.

          RAxML-VI-HPC (randomized axelerated maximum likelihood for high performance computing) is a sequential and parallel program for inference of large phylogenies with maximum likelihood (ML). Low-level technical optimizations, a modification of the search algorithm, and the use of the GTR+CAT approximation as replacement for GTR+Gamma yield a program that is between 2.7 and 52 times faster than the previous version of RAxML. A large-scale performance comparison with GARLI, PHYML, IQPNNI and MrBayes on real data containing 1000 up to 6722 taxa shows that RAxML requires at least 5.6 times less main memory and yields better trees in similar times than the best competing program (GARLI) on datasets up to 2500 taxa. On datasets > or =4000 taxa it also runs 2-3 times faster than GARLI. RAxML has been parallelized with MPI to conduct parallel multiple bootstraps and inferences on distinct starting trees. The program has been used to compute ML trees on two of the largest alignments to date containing 25,057 (1463 bp) and 2182 (51,089 bp) taxa, respectively. icwww.epfl.ch/~stamatak
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            GPU Computing

              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              NCBI GEO: mining tens of millions of expression profiles—database and tools update

              The Gene Expression Omnibus (GEO) repository at the National Center for Biotechnology Information (NCBI) archives and freely disseminates microarray and other forms of high-throughput data generated by the scientific community. The database has a minimum information about a microarray experiment (MIAME)-compliant infrastructure that captures fully annotated raw and processed data. Several data deposit options and formats are supported, including web forms, spreadsheets, XML and Simple Omnibus Format in Text (SOFT). In addition to data storage, a collection of user-friendly web-based interfaces and applications are available to help users effectively explore, visualize and download the thousands of experiments and tens of millions of gene expression patterns stored in GEO. This paper provides a summary of the GEO database structure and user facilities, and describes recent enhancements to database design, performance, submission format options, data query and retrieval utilities. GEO is accessible at
                Bookmark

                Author and book information

                Book Chapter
                2013
                July 06 2013
                : 311-347
                10.1007/978-3-642-37959-8_15
                51862824-fd10-4274-815b-669550d21b8f
                History

                Comments

                Comment on this book

                Book chapters

                Similar content684

                Cited by1