16
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Book Chapter: not found
      The Cat 

      Endocrinology

      edited-book
      Elsevier

      Read this book at

      Buy book Bookmark
          There is no author summary for this book yet. Authors can add summaries to their books on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references525

          • Record: found
          • Abstract: found
          • Article: not found

          Effects of growth hormone on glucose, lipid, and protein metabolism in human subjects.

          In evolutionary terms, GH and intracellular STAT 5 signaling is a very old regulatory system. Whereas insulin dominates periprandially, GH may be viewed as the primary anabolic hormone during stress and fasting. GH exerts anabolic effects directly and through stimulation of IGF-I, insulin, and free fatty acids (FFA). When subjects are well nourished, the GH-induced stimulation of IGF-I and insulin is important for anabolic storage and growth of lean body mass (LBM), adipose tissue, and glycogen reserves. During fasting and other catabolic states, GH predominantly stimulates the release and oxidation of FFA, which leads to decreased glucose and protein oxidation and preservation of LBM and glycogen stores. The most prominent metabolic effect of GH is a marked increase in lipolysis and FFA levels. In the basal state, the effects of GH on protein metabolism are modest and include increased protein synthesis and decreased breakdown at the whole body level and in muscle together with decreased amino acid degradation/oxidation and decreased hepatic urea formation. During fasting and stress, the effects of GH on protein metabolism become more pronounced; lack of GH during fasting increases protein loss and urea production rates by approximately 50%, with a similar increase in muscle protein breakdown. GH is a counterregulatory hormone that antagonizes the hepatic and peripheral effects of insulin on glucose metabolism via mechanisms involving the concomitant increase in FFA flux and uptake. This ability of GH to induce insulin resistance is significant for the defense against hypoglycemia, for the development of "stress" diabetes during fasting and inflammatory illness, and perhaps for the "Dawn" phenomenon (the increase in insulin requirements in the early morning hours). Adult patients with GH deficiency are insulin resistant-probably related to increased adiposity, reduced LBM, and impaired physical performance-which temporarily worsens when GH treatment is initiated. Conversely, despite increased LBM and decreased fat mass, patients with acromegaly are consistently insulin resistant and become more sensitive after appropriate treatment.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Critical nodes in signalling pathways: insights into insulin action.

            Physiologically important cell-signalling networks are complex, and contain several points of regulation, signal divergence and crosstalk with other signalling cascades. Here, we use the concept of 'critical nodes' to define the important junctions in these pathways and illustrate their unique role using insulin signalling as a model system.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Acromegaly pathogenesis and treatment.

              Dysregulated growth hormone (GH) hypersecretion is usually caused by a GH-secreting pituitary adenoma and leads to acromegaly - a disorder of disproportionate skeletal, tissue, and organ growth. High GH and IGF1 levels lead to comorbidities including arthritis, facial changes, prognathism, and glucose intolerance. If the condition is untreated, enhanced mortality due to cardiovascular, cerebrovascular, and pulmonary dysfunction is associated with a 30% decrease in life span. This Review discusses acromegaly pathogenesis and management options. The latter include surgery, radiation, and use of novel medications. Somatostatin receptor (SSTR) ligands inhibit GH release, control tumor growth, and attenuate peripheral GH action, while GH receptor antagonists block GH action and effectively lower IGF1 levels. Novel peptides, including SSTR ligands, exhibiting polyreceptor subtype affinities and chimeric dopaminergic-somatostatinergic properties are currently in clinical trials. Effective control of GH and IGF1 hypersecretion and ablation or stabilization of the pituitary tumor mass lead to improved comorbidities and lowering of mortality rates for this hormonal disorder.
                Bookmark

                Author and book information

                Book Chapter
                2012
                : 547-642
                10.1016/B978-1-4377-0660-4.00024-7
                2b4bfd2c-b4d0-4908-aa9c-cbdba7f8d830
                History

                Comments

                Comment on this book

                Book chapters

                Similar content1,873