There is no author summary for this book yet. Authors can add summaries to their books on ScienceOpen to make them more accessible to a non-specialist audience.
The predominant carotenoids of the macular pigment are lutein, zeaxanthin, and meso-zeaxanthin. The regular distribution pattern of these carotenoids within the human macula indicates that their deposition is actively controlled in this tissue. The chemical, structural, and optical characteristics of these carotenoids are described. Evidence for the presence of minor carotenoids in the retina is cited. Studies of the dietary intake and serum levels of the xanthophylls are discussed. Increased macular carotenoid levels result from supplementation of humans with lutein and zeaxanthin. A functional role for the macular pigment in protection against light-induced retinal damage and age-related macular degeneration is discussed. Prospects for future research in the study of macular pigment require new initiatives that will probe more accurately into the localization of these carotenoids in the retina, identify possible transport proteins and mechanisms, and prove the veracity of the photoprotection hypothesis for the macular pigments.
To evaluate the relationship of dietary carotenoids, vitamin A, alpha-tocopherol, and vitamin C with prevalent age-related macular degeneration (AMD) in the Age-Related Eye Disease Study (AREDS). Demographic, lifestyle, and medical characteristics were ascertained on 4519 AREDS participants aged 60 to 80 years at enrollment. Stereoscopic color fundus photographs were used to categorize participants into 4 AMD severity groups and a control group (participants with < 15 small drusen). Nutrient intake was estimated from a self-administered semiquantitative food frequency questionnaire at enrollment. Intake values were energy adjusted and classified by quintiles. The relationship between diet and AMD status was assessed using logistic regression analyses. Dietary lutein/zeaxanthin intake was inversely associated with neovascular AMD (odds ratio [OR], 0.65; 95% confidence interval [CI], 0.45-0.93), geographic atrophy (OR, 0.45; 95% CI, 0.24-0.86), and large or extensive intermediate drusen (OR, 0.73; 95% CI, 0.56-0.96), comparing the highest vs lowest quintiles of intake, after adjustment for total energy intake and nonnutrient-based covariates. Other nutrients were not independently related to AMD. Higher dietary intake of lutein/zeaxanthin was independently associated with decreased likelihood of having neovascular AMD, geographic atrophy, and large or extensive intermediate drusen.