Adding modular predicates yields a generalization of first-order logic FO over words. The expressive power of FO[<,MOD] with order comparison x<y and predicates for x≡imodn has been investigated by Barrington, Compton, Straubing and Therien. The study of FO[<,MOD]-fragments was initiated by Chaubard, Pin and Straubing. More recently, Dartois and Paperman showed that definability in the two-variable fragment FO2[<,MOD] is decidable. In this paper we continue this line of work. We give an effective algebraic characterization of the word languages in Sigma2[<,MOD]. The fragment Sigma2 consists of first-order formulas in prenex normal form with two blocks of quantifiers starting with an existential block. In addition we show that Delta2[<,MOD], the largest subclass of Sigma2[<,MOD] which is closed under negation, has the same expressive power as two-variable logic FO2[<,MOD]. This generalizes the result FO2[<] = Delta2[<] of Therien and Wilke to modular predicates. As a byproduct, we obtain another decidable characterization of FO2[<,MOD].