126
views
0
recommends
+1 Recommend
2 collections
    0
    shares
      scite_
      0
      0
      0
      0
      Smart Citations
      0
      0
      0
      0
      Citing PublicationsSupportingMentioningContrasting
      View Citations

      See how this article has been cited at scite.ai

      scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

       
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Regulation of Atmospheric Methane Levels by Microorganisms: Could Methanotrophs Play a Role in Mitigating Climate Change

      Preprint
      In review
      research-article
        1 , , 1
      UnisaRxiv
      UNISA Press
      Global warming, greenhouse gases, methane, methanotrophs
      Bookmark

            Abstract

            Content

            Author and article information

            Journal
            UnisaRxiv
            UNISA Press
            30 July 2024
            Affiliations
            [1 ] Department of Life and Consumer Sciences, College of Agriculture and Environmental Sciences, University of South Africa;
            Author notes
            Author information
            https://orcid.org/0000-0002-9815-8097
            https://orcid.org/0000-0002-5183-3737
            Article
            10.25159/UnisaRxiv/000091.v1
            33f7a2ca-268c-4dc7-aa3d-ce6b91ddcbe8

            This work has been published open access under Creative Commons Attribution License CC BY 4.0 , which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Conditions, terms of use and publishing policy can be found at www.scienceopen.com .

            History
            : 30 July 2024
            : 31 July 2024
            Categories

            Data sharing not applicable to this article as no datasets were generated or analysed during the current study.
            Environmental change,Atmospheric science & Climatology,Microbiology & Virology
            methanotrophs,methane,Global warming,greenhouse gases

            References

            1. Schopf J. William, Packer Bonnie M.. Early Archean (3.3-Billion to 3.5-Billion-Year-Old) Microfossils from Warrawoona Group, Australia. Science. Vol. 237(4810):70–73. 1987. American Association for the Advancement of Science (AAAS). [Cross Ref]

            2. Climate Change 2013 – The Physical Science Basis. 2014. Cambridge University Press. [Cross Ref]

            3. Peng Shushi, Lin Xin, Thompson Rona L., Xi Yi, Liu Gang, Hauglustaine Didier, Lan Xin, Poulter Benjamin, Ramonet Michel, Saunois Marielle, Yin Yi, Zhang Zhen, Zheng Bo, Ciais Philippe. Wetland emission and atmospheric sink changes explain methane growth in 2020. Nature. Vol. 612(7940):477–482. 2022. Springer Science and Business Media LLC. [Cross Ref]

            4. Singh Brajesh K., Bardgett Richard D., Smith Pete, Reay Dave S.. Microorganisms and climate change: terrestrial feedbacks and mitigation options. Nature Reviews Microbiology. Vol. 8(11):779–790. 2010. Springer Science and Business Media LLC. [Cross Ref]

            5. Gålfalk Magnus, Olofsson Göran, Crill Patrick, Bastviken David. Making methane visible. Nature Climate Change. Vol. 6(4):426–430. 2016. Springer Science and Business Media LLC. [Cross Ref]

            6. Ripple William J., Smith Pete, Haberl Helmut, Montzka Stephen A., McAlpine Clive, Boucher Douglas H.. Ruminants, climate change and climate policy. Nature Climate Change. Vol. 4(1):2–5. 2014. Springer Science and Business Media LLC. [Cross Ref]

            7. Broucek Jan. Production of Methane Emissions from Ruminant Husbandry: A Review. Journal of Environmental Protection. Vol. 05(15):1482–1493. 2014. Scientific Research Publishing, Inc. [Cross Ref]

            8. Patra Amlan Kumar. Enteric methane mitigation technologies for ruminant livestock: a synthesis of current research and future directions. Environmental Monitoring and Assessment. Vol. 184(4):1929–1952. 2012. Springer Science and Business Media LLC. [Cross Ref]

            9. van Groenigen Kees Jan, van Kessel Chris, Hungate Bruce A.. Increased greenhouse-gas intensity of rice production under future atmospheric conditions. Nature Climate Change. Vol. 3(3):288–291. 2013. Springer Science and Business Media LLC. [Cross Ref]

            10. Hungate R. E.. Hydrogen as an intermediate in the rumen fermentation. Archiv f�r Mikrobiologie. Vol. 59(1-3):158–164. 1967. Springer Science and Business Media LLC. [Cross Ref]

            11. Hungate R. E., Smith W., Bauchop T., Yu Ida, Rabinowitz J. C.. Formate as an Intermediate in the Bovine Rumen Fermentation. Journal of Bacteriology. Vol. 102(2):389–397. 1970. American Society for Microbiology. [Cross Ref]

            12. Chen Hao, Gan Qinglei, Fan Chenguang. Methyl-Coenzyme M Reductase and Its Post-translational Modifications. Frontiers in Microbiology. Vol. 11:2020. Frontiers Media SA. [Cross Ref]

            13. Whittenbury R., Phillips K. C., Wilkinson J. F.. Enrichment, Isolation and Some Properties of Methane-utilizing Bacteria. Journal of General Microbiology. Vol. 61(2):205–218. 1970. Microbiology Society. [Cross Ref]

            14. Semrau Jeremy D., DiSpirito Alan A., Yoon Sukhwan. Methanotrophs and copper. FEMS Microbiology Reviews. Vol. 34(4):496–531. 2010. Oxford University Press (OUP). [Cross Ref]

            15. Khadem Ahmad F., Pol Arjan, Wieczorek Adam, Mohammadi Seyed S., Francoijs Kees-Jan, Stunnenberg Henk G., Jetten Mike S. M., Op den Camp Huub J. M.. Autotrophic Methanotrophy in Verrucomicrobia: Methylacidiphilum fumariolicumSolV Uses the Calvin-Benson-Bassham Cycle for Carbon Dioxide Fixation. Journal of Bacteriology. Vol. 193(17):4438–4446. 2011. American Society for Microbiology. [Cross Ref]

            16. Conrad Ralf. Microbial Ecology of Methanogens and MethanotrophsAdvances in Agronomy. p. 1–63. 2007. Elsevier. [Cross Ref]

            17. Conrad R., Rothfuss F.. Methane oxidation in the soil surface layer of a flooded rice field and the effect of ammonium. Biology and Fertility of Soils. Vol. 12(1):28–32. 1991. Springer Science and Business Media LLC. [Cross Ref]

            18. Frenzel Peter, Rothfuss Franz, Conrad Ralf. Oxygen profiles and methane turnover in a flooded rice microcosm. Biology and Fertility of Soils. Vol. 14(2):84–89. 1992. Springer Science and Business Media LLC. [Cross Ref]

            19. Harriss Robert C., Sebacher Daniel I., Day Frank P.. Methane flux in the Great Dismal Swamp. Nature. Vol. 297(5868):673–674. 1982. Springer Science and Business Media LLC. [Cross Ref]

            20. Kelley Cheryl A., Martens Christopher S., Ussler William. Methane dynamics across a tidally flooded riverbank margin. Limnology and Oceanography. Vol. 40(6):1112–1129. 1995. Wiley. [Cross Ref]

            21. Melling Lulie, Hatano Ryusuke, Goh Kah Joo. Methane fluxes from three ecosystems in tropical peatland of Sarawak, Malaysia. Soil Biology and Biochemistry. Vol. 37(8):1445–1453. 2005. Elsevier BV. [Cross Ref]

            22. Cai Yuanfeng, Zheng Yan, Bodelier Paul L. E., Conrad Ralf, Jia Zhongjun. Conventional methanotrophs are responsible for atmospheric methane oxidation in paddy soils. Nature Communications. Vol. 7(1)2016. Springer Science and Business Media LLC. [Cross Ref]

            23. Vitt Dale H, Halsey Linda A, Zoltai Stephen C. The changing landscape of Canada's western boreal forest: the current dynamics of permafrost. Canadian Journal of Forest Research. Vol. 30(2):283–287. 2000. Canadian Science Publishing. [Cross Ref]

            24. Petit J. R., Jouzel J., Raynaud D., Barkov N. I., Barnola J.-M., Basile I., Bender M., Chappellaz J., Davis M., Delaygue G., Delmotte M., Kotlyakov V. M., Legrand M., Lipenkov V. Y., Lorius C., PÉpin L., Ritz C., Saltzman E., Stievenard M.. Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature. Vol. 399(6735):429–436. 1999. Springer Science and Business Media LLC. [Cross Ref]

            25. Monnin Eric, Indermühle Andreas, Dällenbach André, Flückiger Jacqueline, Stauffer Bernhard, Stocker Thomas F., Raynaud Dominique, Barnola Jean-Marc. Atmospheric CO <sub>2</sub> Concentrations over the Last Glacial Termination. Science. Vol. 291(5501):112–114. 2001. American Association for the Advancement of Science (AAAS). [Cross Ref]

            26. Zhuang Q., Melillo J. M., Kicklighter D. W., Prinn R. G., McGuire A. D., Steudler P. A., Felzer B. S., Hu S.. Methane fluxes between terrestrial ecosystems and the atmosphere at northern high latitudes during the past century: A retrospective analysis with a process‐based biogeochemistry model. Global Biogeochemical Cycles. Vol. 18(3)2004. American Geophysical Union (AGU). [Cross Ref]

            27. McCalley Carmody K., Woodcroft Ben J., Hodgkins Suzanne B., Wehr Richard A., Kim Eun-Hae, Mondav Rhiannon, Crill Patrick M., Chanton Jeffrey P., Rich Virginia I., Tyson Gene W., Saleska Scott R.. Methane dynamics regulated by microbial community response to permafrost thaw. Nature. Vol. 514(7523):478–481. 2014. Springer Science and Business Media LLC. [Cross Ref]

            28. Friborg T., Christensen T. R., Søgaard H.. Rapid response of greenhouse gas emission to early spring thaw in a subarctic mire as shown by micrometeorological techniques. Geophysical Research Letters. Vol. 24(23):3061–3064. 1997. American Geophysical Union (AGU). [Cross Ref]

            29. Yvon-Durocher Gabriel, Allen Andrew P., Bastviken David, Conrad Ralf, Gudasz Cristian, St-Pierre Annick, Thanh-Duc Nguyen, del Giorgio Paul A.. Methane fluxes show consistent temperature dependence across microbial to ecosystem scales. Nature. Vol. 507(7493):488–491. 2014. Springer Science and Business Media LLC. [Cross Ref]

            30. Inglett K. S., Inglett P. W., Reddy K. R., Osborne T. Z.. Temperature sensitivity of greenhouse gas production in wetland soils of different vegetation. Biogeochemistry. Vol. 108(1-3):77–90. 2012. Springer Science and Business Media LLC. [Cross Ref]

            31. Dean Joshua F., Middelburg Jack J., Röckmann Thomas, Aerts Rien, Blauw Luke G., Egger Matthias, Jetten Mike S. M., de Jong Anniek E. E., Meisel Ove H., Rasigraf Olivia, Slomp Caroline P., in't Zandt Michiel H., Dolman A. J.. Methane Feedbacks to the Global Climate System in a Warmer World. Reviews of Geophysics. Vol. 56(1):207–250. 2018. American Geophysical Union (AGU). [Cross Ref]

            32. Dijkstra Feike A., Morgan Jack A., von Fischer Joseph C., Follett Ronald F.. Elevated CO<sub>2</sub>and warming effects on CH<sub>4</sub>uptake in a semiarid grassland below optimum soil moisture. Journal of Geophysical Research. Vol. 116(G1)2011. American Geophysical Union (AGU). [Cross Ref]

            33. Crowther T. W., Todd-Brown K. E. O., Rowe C. W., Wieder W. R., Carey J. C., Machmuller M. B., Snoek B. L., Fang S., Zhou G., Allison S. D., Blair J. M., Bridgham S. D., Burton A. J., Carrillo Y., Reich P. B., Clark J. S., Classen A. T., Dijkstra F. A., Elberling B., Emmett B. A., Estiarte M., Frey S. D., Guo J., Harte J., Jiang L., Johnson B. R., Kröel-Dulay G., Larsen K. S., Laudon H., Lavallee J. M., Luo Y., Lupascu M., Ma L. N., Marhan S., Michelsen A., Mohan J., Niu S., Pendall E., Peñuelas J., Pfeifer-Meister L., Poll C., Reinsch S., Reynolds L. L., Schmidt I. K., Sistla S., Sokol N. W., Templer P. H., Treseder K. K., Welker J. M., Bradford M. A.. Quantifying global soil carbon losses in response to warming. Nature. Vol. 540(7631):104–108. 2016. Springer Science and Business Media LLC. [Cross Ref]

            34. Dacal Marina, Bradford Mark A., Plaza César, Maestre Fernando T., García-Palacios Pablo. Soil microbial respiration adapts to ambient temperature in global drylands. Nature Ecology &amp; Evolution. Vol. 3(2):232–238. 2019. Springer Science and Business Media LLC. [Cross Ref]

            35. Trenberth KE. Changes in precipitation with climate change. Climate Research. Vol. 47(1):123–138. 2011. Inter-Research Science Center. [Cross Ref]

            36. Feng Xuelei, Liu Chuntao, Xie Feiqin, Lu Jian, Chiu Long S., Tintera George, Chen Baohua. Precipitation characteristic changes due to global warming in a high‐resolution (16 km) ECMWF simulation. Quarterly Journal of the Royal Meteorological Society. Vol. 145(718):303–317. 2019. Wiley. [Cross Ref]

            37. Neumann Rebecca B., Moorberg Colby J., Lundquist Jessica D., Turner Jesse C., Waldrop Mark P., McFarland Jack W., Euskirchen Eugenie S., Edgar Colin W., Turetsky Merritt R.. Warming Effects of Spring Rainfall Increase Methane Emissions From Thawing Permafrost. Geophysical Research Letters. Vol. 46(3):1393–1401. 2019. American Geophysical Union (AGU). [Cross Ref]

            38. Bintanja R., Andry O.. Towards a rain-dominated Arctic. Nature Climate Change. Vol. 7(4):263–267. 2017. Springer Science and Business Media LLC. [Cross Ref]

            39. Kolb Steffen, Carbrera Antonio, Kammann Claudia, Kämpfer Peter, Conrad Ralf, Jäckel Udo. Quantitative impact of CO2 enriched atmosphere on abundances of methanotrophic bacteria in a meadow soil. Biology and Fertility of Soils. Vol. 41(5):337–342. 2005. Springer Science and Business Media LLC. [Cross Ref]

            40. Phillips Rebecca L., Whalen Stephen C., Schlesinger William H.. Influence of atmospheric CO<sub>2</sub> enrichment on methane consumption in a temperate forest soil. Global Change Biology. Vol. 7(5):557–563. 2001. Wiley. [Cross Ref]

            41. McLain Jean E. T., Kepler Thomas B., Ahmann Dianne M.. Belowground factors mediating changes in methane consumption in a forest soil under elevated CO<sub>2</sub>. Global Biogeochemical Cycles. Vol. 16(3)2002. American Geophysical Union (AGU). [Cross Ref]

            42. Smith K. A., Dobbie K. E., Ball B. C., Bakken L. R., Sitaula B. K., Hansen S., Brumme R., Borken W., Christensen S., Priemé A., Fowler D., Macdonald J. A., Skiba U., Klemedtsson L., Kasimir‐Klemedtsson A., Degórska A., Orlanski P.. Oxidation of atmospheric methane in Northern European soils, comparison with other ecosystems, and uncertainties in the global terrestrial sink. Global Change Biology. Vol. 6(7):791–803. 2000. Wiley. [Cross Ref]

            43. Sitaula Bishal K., Hansen Sissel, Sitaula J. Ileana Bonilla, Bakken Lars R.. Biogeochemistry. 2000. Springer Science and Business Media LLC. [Cross Ref]

            44. Liu Chunyan, Holst Jirko, Brüggemann Nicolas, Butterbach-Bahl Klaus, Yao Zhisheng, Yue Jin, Han Shenghui, Han Xingguo, Krümmelbein Julia, Horn Rainer, Zheng Xunhua. Winter-grazing reduces methane uptake by soils of a typical semi-arid steppe in Inner Mongolia, China. Atmospheric Environment. Vol. 41(28):5948–5958. 2007. Elsevier BV. [Cross Ref]

            45. Reim Andreas, Lüke Claudia, Krause Sascha, Pratscher Jennifer, Frenzel Peter. One millimetre makes the difference: high-resolution analysis of methane-oxidizing bacteria and their specific activity at the oxic–anoxic interface in a flooded paddy soil. The ISME Journal. Vol. 6(11):2128–2139. 2012. Oxford University Press (OUP). [Cross Ref]

            46. Hiltbrunner David, Zimmermann Stephan, Karbin Saeed, Hagedorn Frank, Niklaus Pascal A.. Increasing soil methane sink along a 120‐year afforestation chronosequence is driven by soil moisture. Global Change Biology. Vol. 18(12):3664–3671. 2012. Wiley. [Cross Ref]

            47. Ojima D.S., Valentine D.W., Mosier A.R., Parton W.J., Schimel D.S.. Effect of land use change on methane oxidation in temperate forest and grassland soils. Chemosphere. Vol. 26(1-4):675–685. 1993. Elsevier BV. [Cross Ref]

            48. Nazaries Loïc, Tate Kevin R, Ross Des J, Singh Jagrati, Dando John, Saggar Surinder, Baggs Elizabeth M, Millard Peter, Murrell J Colin, Singh Brajesh K. Response of methanotrophic communities to afforestation and reforestation in New Zealand. The ISME Journal. Vol. 5(11):1832–1836. 2011. Oxford University Press (OUP). [Cross Ref]

            49. Keller Michael, Mitre Martin E., Stallard Robert F.. Consumption of atmospheric methane in soils of central Panama: Effects of agricultural development. Global Biogeochemical Cycles. Vol. 4(1):21–27. 1990. American Geophysical Union (AGU). [Cross Ref]

            50. Zerva Argyro, Mencuccini Maurizio. Short-term effects of clearfelling on soil CO2, CH4, and N2O fluxes in a Sitka spruce plantation. Soil Biology and Biochemistry. Vol. 37(11):2025–2036. 2005. Elsevier BV. [Cross Ref]

            51. McDaniel M. D., Saha D., Dumont M. G., Hernández M., Adams M. A.. The Effect of Land-Use Change on Soil CH4 and N2O Fluxes: A Global Meta-Analysis. Ecosystems. Vol. 22(6):1424–1443. 2019. Springer Science and Business Media LLC. [Cross Ref]

            52. Yagi Kazuyuki, Tsuruta Haruo, Kanda Ken‐ichi, Minami Katsuyuki. Effect of water management on methane emission from a Japanese rice paddy field: Automated methane monitoring. Global Biogeochemical Cycles. Vol. 10(2):255–267. 1996. American Geophysical Union (AGU). [Cross Ref]

            53. Cai Z. C., Tsuruta H., Minami K.. Methane emission from rice fields in China: Measurements and influencing factors. Journal of Geophysical Research: Atmospheres. Vol. 105(D13):17231–17242. 2000. American Geophysical Union (AGU). [Cross Ref]

            54. Xu H., Cai Z. C., Tsuruta H.. Soil Moisture between Rice-Growing Seasons Affects Methane Emission, Production, and Oxidation. Soil Science Society of America Journal. Vol. 67(4):1147–1157. 2003. Wiley. [Cross Ref]

            55. LAGOMARSINO Alessandra, AGNELLI Alessandro Elio, LINQUIST Bruce, ADVIENTO-BORBE Maria Arlene, AGNELLI Alberto, GAVINA Giacomo, RAVAGLIA Stefano, FERRARA Rossana Monica. Alternate Wetting and Drying of Rice Reduced CH4 Emissions but Triggered N2O Peaks in a Clayey Soil of Central Italy. Pedosphere. Vol. 26(4):533–548. 2016. Elsevier BV. [Cross Ref]

            56. Yagi Kazuyuki, Tsuruta Haruo, Minami Katsuyuki. Nutrient Cycling in Agroecosystems. 1997. Springer Science and Business Media LLC. [Cross Ref]

            57. Brahima Traore, Fasse Samake, Amadoun babana, Min Hang. Effects of different fertilizers on methane emission from paddy field of Zhejiang, China. African Journal of Environmental Science and Technology. Vol. 11(1):89–93. 2017. Academic Journals. [Cross Ref]

            58. Bossio D. Methane pool and flux dynamics in a rice field following straw incorporation. Soil Biology and Biochemistry. Vol. 31(9):1313–1322. 1999. Elsevier BV. [Cross Ref]

            59. Moreno-García Beatriz, Guillén Mónica, Quílez Dolores. Greenhouse Gas Emissions as Affected by Fertilization Type (Pig Slurry vs. Mineral) and Soil Management in Mediterranean Rice Systems. Agronomy. Vol. 10(4)2020. MDPI AG. [Cross Ref]

            60. Wang Zhi-Ping, Ineson Phil. Methane oxidation in a temperate coniferous forest soil: effects of inorganic N. Soil Biology and Biochemistry. Vol. 35(3):427–433. 2003. Elsevier BV. [Cross Ref]

            61. Neue H. U.. Fluxes of methane from rice fields and potential for mitigation. Soil Use and Management. Vol. 13(s4):258–267. 1997. Wiley. [Cross Ref]

            62. Tseten Tenzin, Sanjorjo Rey Anthony, Kwon Moonhyuk, Kim Seon-Won. Strategies to Mitigate Enteric Methane Emissions from Ruminant Animals. Journal of Microbiology and Biotechnology. Vol. 32(3):269–277. 2022. Korean Society for Microbiology and Biotechnology. [Cross Ref]

            63. Machmüller Andrea, Ossowski D.A, Kreuzer M. Comparative evaluation of the effects of coconut oil, oilseeds and crystalline fat on methane release, digestion and energy balance in lambs. Animal Feed Science and Technology. Vol. 85(1-2):41–60. 2000. Elsevier BV. [Cross Ref]

            64. Clark H., Pinares-Patiño C., deKlein C.. Methane and nitrous oxide emissions from grazed grasslandsGrassland: a global resource. p. 279–293. 2005. Brill | Wageningen Academic. [Cross Ref]

            65. van Nevel C.J., Demeyer D.I.. Influence of antibiotics and a deaminase inhibitor on volatile fatty acids and methane production from detergent washed hay and soluble starch by rumen microbes in vitro. Animal Feed Science and Technology. Vol. 37(1-2):21–31. 1992. Elsevier BV. [Cross Ref]

            66. McGinn S. M., Beauchemin K. A., Coates T., Colombatto D.. Methane emissions from beef cattle: Effects of monensin, sunflower oil, enzymes, yeast, and fumaric acid1. Journal of Animal Science. Vol. 82(11):3346–3356. 2004. Oxford University Press (OUP). [Cross Ref]

            67. Roque Breanna M., Venegas Marielena, Kinley Robert D., de Nys Rocky, Duarte Toni L., Yang Xiang, Kebreab Ermias. Red seaweed (Asparagopsis taxiformis) supplementation reduces enteric methane by over 80 percent in beef steers. PLOS ONE. Vol. 16(3)2021. Public Library of Science (PLoS). [Cross Ref]

            68. Lee Sung-Woo, Keeney David R., Lim Dong-Hee, Dispirito Alan A., Semrau Jeremy D.. Mixed Pollutant Degradation by <i>Methylosinus trichosporium</i> OB3b Expressing either Soluble or Particulate Methane Monooxygenase: Can the Tortoise Beat the Hare? Applied and Environmental Microbiology. Vol. 72(12):7503–7509. 2006. American Society for Microbiology. [Cross Ref]

            69. Ocko Ilissa B, Sun Tianyi, Shindell Drew, Oppenheimer Michael, Hristov Alexander N, Pacala Stephen W, Mauzerall Denise L, Xu Yangyang, Hamburg Steven P. Acting rapidly to deploy readily available methane mitigation measures by sector can immediately slow global warming. Environmental Research Letters. Vol. 16(5)2021. IOP Publishing. [Cross Ref]

            Comments

            Comment on this article