132
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      UK Computing Summit 2025: Navigating change (surviving and beyond) - 29-30 April @ Sheffield Hallam University - Register here.

      scite_
      0
      0
      0
      0
      Smart Citations
      0
      0
      0
      0
      Citing PublicationsSupportingMentioningContrasting
      View Citations

      See how this article has been cited at scite.ai

      scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

       
      • Record: found
      • Abstract: found
      • Conference Proceedings: found
      Is Open Access

      Systematic Review of XAI Tools for AI-HCI Research

      Published
      proceedings-article
      ,
      37th International BCS Human-Computer Interaction Conference (BCS HCI 24)
      The International BCS Human-Computer Interaction Conference in 2024 was supported by the BCS Interactions Special Interest Group and hosted by the University of Central Lancashire in Preston. The BCS HCI Conference welcomed submissions on all aspects of human-computer interaction. Topics included: user experience (UX), usability testing, interaction design (IxD), human-centred AI (HCAI), education, health, sustainability, the Internet of Things (IoT), interaction technologies, and emerging interactive applications.
      15–17 July 2024
      Explainable AI, XAI tools, Users, Application domains, XAI interfaces, Input data, Output data
      Bookmark

            Abstract

            Content

            Author and article information

            Contributors
            Conference
            July 2024
            July 2024
            : 47-59
            Affiliations
            [0001]Lancaster University
            Article
            10.14236/ewic/BCSHCI2024.6
            9ed74f5c-a5df-4ac4-81c3-71e92b724695
            © Alaqsam et al. Published by BCS Learning and Development Ltd. Proceedings of BCS HCI 2024, UK

            This work is licensed under a Creative Commons Attribution 4.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

            37th International BCS Human-Computer Interaction Conference
            BCS HCI 24
            37
            University of Central Lancashire (UCLan)
            15–17 July 2024
            Electronic Workshops in Computing (eWiC)
            The International BCS Human-Computer Interaction Conference in 2024 was supported by the BCS Interactions Special Interest Group and hosted by the University of Central Lancashire in Preston. The BCS HCI Conference welcomed submissions on all aspects of human-computer interaction. Topics included: user experience (UX), usability testing, interaction design (IxD), human-centred AI (HCAI), education, health, sustainability, the Internet of Things (IoT), interaction technologies, and emerging interactive applications.
            History
            Product

            1477-9358 BCS Learning & Development

            Self URI (article page): https://www.scienceopen.com/hosted-document?doi=10.14236/ewic/BCSHCI2024.6
            Self URI (journal page): https://ewic.bcs.org/
            Categories
            Electronic Workshops in Computing

            Applied computer science,Computer science,Security & Cryptology,Graphics & Multimedia design,General computer science,Human-computer-interaction
            Application domains,Input data,XAI tools,Output data,Users,Explainable AI,XAI interfaces

            REFERENCES

            1. AdadiA., & BerradaM. (2018). Peeking Inside the Black-Box: A Survey on Explainable Artificial Intelligence (XAI). IEEE Access, 6. https://doi.org/10.1109/ACCESS.2018.2870052

            2. AdnanM., UddinM. I., KhanE., AlharithiF. S., AminS., & AlzahraniA.A. (2022). Earliest Possible Global and Local Interpretation of Students’ Performance in Virtual Learning Environment by Leveraging Explainable AI. IEEE Access, 10(December), 129843–129864. https://doi.org/10.1109/ACCESS.2022.3227072

            3. AlbahriA. S., DuhaimA. M., FadhelM. A., AlnoorA., BaqerN. S., AlzubaidiL., … DeveciM. (2023). A Systematic Review of Trustworthy and Explainable Artificial Intelligence in Healthcare: Assessment of Quality, Bias Risk, and Data Fusion. Information Fusion, 96(January), 156–191. https://doi.org/10.1016/j.inffus.2023.03.008

            4. AlonsoJ. M., & CasalinoG. (2019). Explainable Artificial Intelligence for Human-Centric Data Analysis in Virtual Learning Environments. Communications in Computer and Information Science, 1091(September), 125–138. https://doi.org/10.1007/978-3-030-31284-8_10

            5. AlotaibiA., & SasC. (2023). Review of AI-Based Mental Health Apps. in Proceedings of British HCI Conference 2023, 13 pages, DOI: 10.14236/ewic/BCSHCI2023.27

            6. AlperinK. B., WollaberA. B., & GomezS.R. (2020). Improving Interpretability for Cyber Vulnerability Assessment Using Focus and Context Visualizations. 2020 IEEE Symposium on Visualization for Cyber Security, VizSec 2020, 30–39. https://doi.org/10.1109/VizSec51108.2020.00011

            7. AngelovP. P., SoaresE. A., JiangR., ArnoldN. I., & AtkinsonP.M. (2021). Explainable artificial intelligence: an analytical review. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 11(5). https://doi.org/10.1002/widm.1424

            8. AnjomshoaeS., CalvaresiD., NajjarA., & FrämlingK. (2019). Explainable agents and robots: Results from a systematic literature review. Proceedings of the International Joint Conference on Autonomous Agents and Multiagent Systems, AAMAS, 2 (Aamas), 1078–1088. https://doi.org/10.5555/3306127.3331806

            9. AntoniadiA. M., DuY., GuendouzY., WeiL., MazoC., BeckerB. A., & MooneyC. (2021). Current challenges and future opportunities for xai in machine learning-based clinical decision support systems: A systematic review. Applied Sciences (Switzerland), 11(11), 1–23. https://doi.org/10.3390/app11115088

            10. BachT. A., KhanA., HallockH., BeltrãoG., & SousaS. (2024). A Systematic Literature Review of User Trust in AI-Enabled Systems: An HCI Perspective. International Journal of Human-Computer Interaction, 40(5), 1251–1266. https://doi.org/10.1080/10447318.2022.2138826

            11. BanieckiH., ParzychD., & BiecekP. (2023). The grammar of interactive explanatory model analysis. Data Mining and Knowledge Discovery, (January). https://doi.org/10.1007/s10618-023-00924-w

            12. BarredoA., Díaz-RodríguezN., DelJ., BennetotA., TabikS., BarbadoA., … HerreraF. (2020). Explainable Artificial Intelligence ( XAI ): Concepts, taxonomies, opportunities and challenges toward responsible AI. Information Fusion, 58 (October 2019), 82–115. https://doi.org/10.1016/j.inffus.2019.12.012

            13. BertiniF., Dal Palù, A., FabianoF., & IottiE. (2022). CARING for xAI. CEUR Workshop Proceedings, 3204, 47–60.

            14. BistarelliS., MancinelliA., SantiniF., & TaticchiC. (2022). Arg-XAI: a Tool for Explaining Machine Learning Results. Proceedings -International Conference on Tools with Artificial Intelligence, ICTAI, 2022-Octob, 205–212. https://doi.org/10.1109/ICTAI56018.2022.00037

            15. BrdnikS. (2023). GUI Design Patterns for Improving the HCI in Explainable Artificial Intelligence. International Conference on Intelligent User Interfaces, Proceedings IUI, 240–242. https://doi.org/10.1145/3581754.3584114

            16. CartaS., ConsoliS., PoddaA. S., Reforgiato RecuperoD., & StanciuM.M. (2022). An eXplainable Artificial Intelligence tool for statistical arbitrage. Software Impacts, 14(June), 100354. https://doi.org/10.1016/j.simpa.2022.100354

            17. ChalabianlooN., CanY. S., UmairM., SasC., & ErsoyC. (2022). Application level performance evaluation of wearable devices for stress classification with explainable AI. Pervasive and Mobile Computing, 87, 101703. https://doi.org/10.1016/j.pmcj.2022.101703

            18. ChattopadhayA., SarkarA., HowladerP., & BalasubramanianV.N. (2018). Grad-CAM++: Generalized gradient-based visual explanations for deep convolutional networks. Proceedings -2018 IEEE Winter Conference on Applications of Computer Vision, WACV 2018, 2018-January, 839–847. https://doi.org/10.1109/WACV.2018.00097

            19. ChromikM., & ButzA. (2021). Human-XAI Interaction: A Review and Design Principles for Explanation User Interfaces. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 12933 LNCS, 619–640. https://doi.org/10.1007/978-3-030-85616-8_36

            20. ChromikM., & SchuesslerM. (2020). A taxonomy for human subject evaluation of black-box explanations in XAI. CEUR Workshop Proceedings, 2582.

            21. ClementT., KemmerzellN., AbdelaalM., & AmbergM. (2023). XAIR: A Systematic Metareview of Explainable AI (XAI) Aligned to the Software Development Process. Machine Learning and Knowledge Extraction, 5(1), 78–108. https://doi.org/10.3390/make5010006

            22. DieberJ., & KirraneS. (2020). Why model why? Assessing the strengths and limitations of LIME. ArXiv, abs/2012.00093.

            23. DindorfC., KonradiJ., WolfC., TaetzB., BleserG., HuthwelkerJ., … FröhlichM. (2021). Classification and automated interpretation of spinal posture data using a pathologyindependent classifier and explainable artificial intelligence (Xai). Sensors, 21(18), 1–16. https://doi.org/10.3390/s21186323

            24. DosovitskiyA., BeyerL., KolesnikovA., WeissenbornD., ZhaiX., UnterthinerT., … HoulsbyN. (2020). An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale.

            25. EhsanU., LiaoQ. V., MullerM., RiedlM. O., & WeiszJ.D. (2021). Expanding explainability: Towards social transparency in ai systems. Conference on Human Factors in Computing Systems -Proceedings. https://doi.org/10.1145/3411764.3445188

            26. EhsanU., WintersbergerP., LiaoQ. V., WatkinsE. A., MangerC., Daumé, H., … RiedlM.O. (2022). Human-Centered Explainable AI (HCXAI): Beyond Opening the Black-Box of AI. Conference on Human Factors in Computing Systems -Proceedings. https://doi.org/10.1145/3491101.3503727

            27. EhsanU., WintersbergerP., WatkinsE. A., RamosG., WeiszJ. D., RienerA., & RiedlM.O. (2023). Human-Centered Explainable AI (HCXAI): Coming of Age. https://doi.org/10.1145/3544549.3573832

            28. FeredayJ., & Muir-CochraneE. (2006). Demonstrating Rigor Using Thematic Analysis: A Hybrid Approach of Inductive and Deductive Coding and Theme Development. International Journal of Qualitative Methods, 5(1), 80–92. https://doi.org/10.1177/160940690600500107

            29. FouladgarN., AlirezaieM., & FramlingK. (2022). Metrics and Evaluations of Time Series Explanations: An Application in Affect Computing. IEEE Access, 10, 23995–24009. https://doi.org/10.1109/ACCESS.2022.3155115

            30. GalliA., PiscitelliM. S., MoscatoV., & CapozzoliA. (2022). Bridging the gap between complexity and interpretability of a data analytics-based process for benchmarking energy performance of buildings. Expert Systems with Applications, 206(June 2021), 117649. https://doi.org/10.1016/j.eswa.2022.117649

            31. GandolfiM., GalazzoI. B., PavanR. G., CrucianiF., ValeN., PicelliA., … MenegazG. (2023). eXplainable AI Allows Predicting Upper Limb Rehabilitation Outcomes in Sub-Acute Stroke Patients. IEEE Journal of Biomedical and Health Informatics, 27(1), 263–273. https://doi.org/10.1109/JBHI.2022.3220179

            32. GulmezogluB. (2022). XAI-Based Microarchitectural Side-Channel Analysis for Website Fingerprinting Attacks and Defenses. IEEE Transactions on Dependable and Secure Computing, 19(6), 4039–4051. https://doi.org/10.1109/TDSC.2021.3117145

            33. HeberleH., ZhaoL., SchmidtS., WolfT., & HeinrichJ. (2023). XSMILES: interactive visualization for molecules, SMILES and XAI attribution scores. Journal of Cheminformatics, 15(1), 1–12. https://doi.org/10.1186/s13321-022-00673-w

            34. HeimerlA., BaurT., LingenfelserF., WagnerJ., & AndreE. (2019). NOVA -A tool for eXplainable Cooperative Machine Learning. 2019 8th International Conference on Affective Computing and Intelligent Interaction, ACII 2019, (Xcml). https://doi.org/10.1109/ACII.2019.8925519

            35. HenriksenE., HaldenU., KuzluM., & CaliU. (2022). Electrical Load Forecasting Utilizing an Explainable Artificial Intelligence (XAI) Tool on Norwegian Residential Buildings. SEST 2022 -5th International Conference on Smart Energy Systems and Technologies, 1–6. https://doi.org/10.1109/SEST53650.2022.9898500

            36. HoffmanR. R., MuellerS. T., KleinG., & LitmanJ. (2023). Measures for explainable AI: Explanation goodness, user satisfaction, mental models, curiosity, trust, and human-AI performance. Frontiers in Computer Science, 5. https://doi.org/10.3389/fcomp.2023.1096257

            37. HolzingerA., CarringtonA., & MüllerH. (2020). Measuring the Quality of Explanations: The System Causability Scale (SCS): Comparing Human and Machine Explanations. KI -Kunstliche Intelligenz, 34(2), 193–198. https://doi.org/10.1007/s13218-020-00636-z

            38. IslamM. S., HussainI., RahmanM. M., ParkS. J., & HossainM.A. (2022). Explainable Artificial Intelligence Model for Stroke Prediction Using EEG Signal. Sensors, 22(24). https://doi.org/10.3390/s22249859

            39. JayakumarK., & SkandhakumarN. (2022). A Visually Interpretable Forensic Deepfake Detection Tool Using Anchors. 7th International Conference on Information Technology Research: Digital Resilience and Reinvention, ICITR 2022 -Proceedings. https://doi.org/10.1109/ICITR57877.2022.9993294

            40. KadirM. A., Mohamed SelimA., BarzM., & SonntagD. (2023). A User Interface for Explaining Machine Learning Model Explanations. International Conference on Intelligent User Interfaces, Proceedings IUI, 59–63. https://doi.org/10.1145/3581754.3584131

            41. KapciaM., EshkikiH., DuellJ., FanX., ZhouS., & MoraB. (2021). ExMed: An AI Tool for Experimenting Explainable AI Techniques on Medical Data Analytics. Proceedings -International Conference on Tools with Artificial Intelligence, ICTAI, 2021-Novem, 841–845. https://doi.org/10.1109/ICTAI52525.2021.00134

            42. KelekoA. T., Kamsu-FoguemB., NgounaR. H., & TongneA. (2023). Health condition monitoring of a complex hydraulic system using Deep Neural Network and DeepSHAP explainable XAI. Advances in Engineering Software, 175(January 2022), 103339. https://doi.org/10.1016/j.advengsoft.2022.103339

            43. KimJ. K., BaeM. N., LeeK., KimJ. C., & HongS.G. (2022). Explainable Artificial Intelligence and Wearable Sensor-Based Gait Analysis to Identify Patients with Osteopenia and Sarcopenia in Daily Life. Biosensors, 12(3). https://doi.org/10.3390/bios12030167

            44. KonradiJ., ZajberM., BetzU., DreesP., GerkenA., & MeineH. (2022). AI-Based Detection of Aspiration for Video-Endoscopy with Visual Aids in Meaningful Frames to Interpret the Model Outcome. Sensors, 22(23). https://doi.org/10.3390/s22239468

            45. KumarA., ManikandanR., KoseU., GuptaD., & SatapathyS.C. (2021). Doctor’s dilemma: Evaluating an explainable subtractive spatial lightweight convolutional neural network for brain tumor diagnosis. ACM Transactions on Multimedia Computing, Communications and Applications, 17(3s). https://doi.org/10.1145/3457187

            46. KuzluM., CaliU., SharmaV., & Güler, Ö. (2020). Gaining insight into solar photovoltaic power generation forecasting utilizing explainable artificial intelligence tools. IEEE Access, 8, 187814–187823. https://doi.org/10.1109/ACCESS.2020.3031477

            47. LaatoS., TiainenM., Najmul IslamA.K.M., & MäntymäkiM. (2021). How to explain AI systems to end users: a systematic literature review and research agenda. Internet Research, 32(7), 1–31. https://doi.org/10.1108/INTR-08-2021-0600

            48. LangleyP., MeadowsB., SridharanM., & ChoiD. (2017). Explainable Agency for Intelligent Autonomous Systems. Proceedings of the AAAI Conference on Artificial Intelligence, 31(2), 4762–4763. https://doi.org/10.1609/aaai.v31i2.19108

            49. LeungC. K., PazdorA. G. M., & SouzaJ. (2021). Explainable Artificial Intelligence for Data Science on Customer Churn. 2021 IEEE 8th International Conference on Data Science and Advanced Analytics, DSAA 2021. https://doi.org/10.1109/DSAA53316.2021.9564166

            50. LiangY., LiS., YanC., LiM., & JiangC. (2021). Explaining the black-box model: A survey of local interpretation methods for deep neural networks. Neurocomputing, 419, 168–182. https://doi.org/10.1016/j.neucom.2020.08.011

            51. LongoL., GoebelR., LecueF., KiesebergP., & HolzingerA. (2020). Explainable Artificial Intelligence: Concepts, Applications, Research Challenges and Visions. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 12279 LNCS, 1–16. https://doi.org/10.1007/978-3-030-57321-8_1

            52. LopesP., SilvaE., BragaC., OliveiraT., & RosadoL. (2022). XAI Systems Evaluation: A Review of Human and Computer-Centred Methods. Applied Sciences (Switzerland), 12(19). https://doi.org/10.3390/app12199423

            53. LoveP. E. D., FangW., MatthewsJ., PorterS., LuoH., & DingL. (2022). Explainable Artificial Intelligence: Precepts, Methods, and Opportunities for Research in Construction. ArXiv Preprint ArXiv:2211.06579, 1–58.

            54. LucieriA., BajwaM. N., BraunS. A., MalikM. I., DengelA., & AhmedS. (2022). ExAID: A multimodal explanation framework for computeraided diagnosis of skin lesions. Computer Methods and Programs in Biomedicine, 215. https://doi.org/10.1016/j.cmpb.2022.106620

            55. LundbergS. M., & LeeS.I. (2017). A unified approach to interpreting model predictions. Advances in Neural Information Processing Systems, 2017-Decem(Section 2), 4766–4775.

            56. MalandriL., MercorioF., MezzanzanicaM., & NobaniN. (2022). ConvXAI: a System for Multimodal Interaction with Any Black-box Explainer. In Cognitive Computation. Springer US. https://doi.org/10.1007/s12559-022-10067-7

            57. Mandeep, AgarwalA., BhatiaA., MalhiA., KalerP., & PannuH.S. (2022). Machine Learning Based Explainable Financial Forecasting. 2022 4th International Conference on Computer Communication and the Internet, ICCCI 2022, 34–38. https://doi.org/10.1109/ICCCI55554.2022.9850272

            58. MercorioF., MezzanzanicaM., & SevesoA. (2020). eXDiL: A Tool for Classifying and eXplaining Hospital Discharge Letters. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 12279 LNCS(DiL), 159–172. https://doi.org/10.1007/978-3-030-57321-8_9

            59. MoherD., LiberatiA., TetzlaffJ., & AltmanD.G. (2010). Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. International Journal of Surgery, 8(5), 336–341. https://doi.org/10.1016/j.ijsu.2010.02.007

            60. Moreno-SanchezP.A. (2020). Development of an Explainable Prediction Model of Heart Failure Survival by Using Ensemble Trees. Proceedings -2020 IEEE International Conference on Big Data, Big Data 2020, 4902–4910. https://doi.org/10.1109/BigData50022.2020.9378460

            61. MoscatoV., PicarielloA., & Sperlí, G. (2021). A benchmark of machine learning approaches for credit score prediction. Expert Systems with Applications, 165(May 2020), 113986. https://doi.org/10.1016/j.eswa.2020.113986

            62. MuchaH., RobertS., BreitschwerdtR., & FellmannM. (2021). Interfaces for Explanations in Human-AI Interaction: Proposing a Design Evaluation Approach. Conference on Human Factors in Computing Systems -Proceedings. https://doi.org/10.1145/3411763.3451759

            63. MuhammadA. P., KnaussE., & BärgmanJ. (2023). Human factors in developing automated vehicles: A requirements engineering perspective. Journal of Systems and Software, 205, 111810. https://doi.org/10.1016/j.jss.2023.111810

            64. MuhammadK., UllahA., LloretJ., SerJ. Del, & De AlbuquerqueV.H.C. (2021). Deep Learning for Safe Autonomous Driving: Current Challenges and Future Directions. IEEE Transactions on Intelligent Transportation Systems, 22(7). https://doi.org/10.1109/TITS.2020.3032227

            65. NagyM., & MolontayR. (2023). Interpretable Dropout Prediction: Towards XAI-Based Personalized Intervention. International Journal of Artificial Intelligence in Education, (0123456789). https://doi.org/10.1007/s40593-023-00331-8

            66. NaisehM., JiangN., MaJ., & AliR. (2020). Explainable Recommendations in Intelligent Systems: Delivery Methods, Modalities and Risks. Lecture Notes in Business Information Processing, 385 LNBIP(March), 212–228. https://doi.org/10.1007/978-3-030-50316-1_13

            67. NaisehM., SimkuteA., ZieniB., JiangN., & AliR. (2024). C-XAI: A Conceptual Framework for Designing XAI tools that Support Trust Calibration. Journal of Responsible Technology, 100076. https://doi.org/10.1016/j.jrt.2024.100076

            68. NautaM., TrienesJ., PathakS., NguyenE., PetersM., SchmittY., … SeifertC. (2023). From Anecdotal Evidence to Quantitative Evaluation Methods: A Systematic Review on Evaluating Explainable AI. ACM Computing Surveys. https://doi.org/10.1145/3583558

            69. NazarM., AlamM. M., YafiE., & Su’UdM.M. (2021). A Systematic Review of Human-Computer Interaction and Explainable Artificial Intelligence in Healthcare with Artificial Intelligence Techniques. IEEE Access, 9, 153316–153348. https://doi.org/10.1109/ACCESS.2021.3127881

            70. OduorE., QianK., LiY., & PopaL. (2020). XAIT: An interactivewebsite for explainable ai for text. International Conference on Intelligent User Interfaces, Proceedings IUI, 120–121. https://doi.org/10.1145/3379336.3381468

            71. OliveiraE., BragaC., SampaioA., OliveiraT., SoaresF., & RosadoL. (2023). Designing XAIbased Computer-aided Diagnostic Systems: Operationalising User Research Methods. CEUR Workshop Proceedings, 3359, 25–36.

            72. PaniguttiC., BerettaA., FaddaD., GiannottiF., PedreschiD., PerottiA., & RinzivilloS. (2023). Co-design of human-centered, explainable AI for clinical decision support. ACM Transactions on Interactive Intelligent Systems. https://doi.org/10.1145/3587271

            73. PoliJ.-P., OuerdaneW., & PierrardR. (2021). Generation of Textual Explanations in XAI: the Case of Semantic Annotation. 2021 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), 1–6. IEEE. https://doi.org/10.1109/FUZZ45933.2021.9494589

            74. QianK., DanilevskyM., KatsisY., KawasB., OduorE., PopaL., & LiY. (2021). XNLP: A living survey for XAI research in natural language processing. International Conference on Intelligent User Interfaces, Proceedings IUI, 78–80. https://doi.org/10.1145/3397482.3450728

            75. RasG., van GervenM., & HaselagerP. (2018). Explanation Methods in Deep Learning: Users, Values, Concerns and Challenges. https://doi.org/10.1007/978-3-319-98131-4_2

            76. RoyI., FengB., RoychowdhuryS., RaviS. K., UmretiyaR. V., ReynoldsC., … HoffmanA. (2023). Understanding oxidation of Fe-Cr-Al alloys through explainable artificial intelligence. MRS Communications, 13(1), 82–88. https://doi.org/10.1557/s43579-022-00315-0

            77. SaeedW., & OmlinC. (2021). Explainable AI (XAI): A systematic meta-survey of current challenges and future opportunities. Knowledge-Based Systems, 263(Dl). https://doi.org/10.1016/j.knosys.2023.110273

            78. SanchesP., JansonA., KarpashevichP., NadalC., QuC., Daudén RoquetC., … SasC. (2019). HCI and Affective Health. Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems, 1–17. New York, NY, USA: ACM. https://doi.org/10.1145/3290605.3300475

            79. Šarčević, A., PintarD., Vranić, M., & KrajnaA. (2022). Cybersecurity Knowledge Extraction Using XAI. Applied Sciences (Switzerland), 12(17). https://doi.org/10.3390/app12178669

            80. SarpS., CatakF. O., KuzluM., CaliU., KusetogullariH., ZhaoY., … GulerO. (2023). An XAI approach for COVID-19 detection using transfer learning with X-ray images. Heliyon, 9(4), e15137. https://doi.org/10.1016/j.heliyon.2023.e15137

            81. SarpS., KuzluM., CaliU., ElmaO., & GulerO. (2021). An Interpretable Solar Photovoltaic Power Generation Forecasting Approach Using An Explainable Artificial Intelligence Tool. 2021 IEEE Power & Energy Society Innovative Smart Grid Technologies Conference (ISGT), (ii), 1–5. IEEE. https://doi.org/10.1109/ISGT49243.2021.9372263

            82. SarpS., KuzluM., WilsonE., CaliU., & GulerO. (2021). The enlightening role of explainable artificial intelligence in chronic wound classification. Electronics (Switzerland), 10(12). https://doi.org/10.3390/electronics10121406

            83. SchoonderwoerdT. A. J., JorritsmaW., NeerincxM. A., & van den BoschK. (2021). Humancentered XAI: Developing design patterns for explanations of clinical decision support systems. International Journal of Human Computer Studies, 154, 102684. https://doi.org/10.1016/j.ijhcs.2021.102684

            84. SchwalbeG., & FinzelB. (2023). A comprehensive taxonomy for explainable artificial intelligence: a systematic survey of surveys on methods and concepts. Data Mining and Knowledge Discovery. https://doi.org/10.1007/s10618-022-00867-8

            85. SelvarajuR. R., CogswellM., DasA., VedantamR., ParikhD., & BatraD. (2017). Grad-CAM: Visual Explanations from Deep Networks via Gradient-Based Localization. International Journal of Computer Vision, 128(2), 618–626. https://doi.org/10.1109/ICCV.2017.74

            86. ShreeS., ChandrasekaranJ., LeiY., KackerR. N., & KuhnD.R. (2022). DeltaExplainer: A Software Debugging Approach to Generating Counterfactual Explanations. Proceedings -4th IEEE International Conference on Artificial Intelligence Testing, AITest 2022, 103–110. https://doi.org/10.1109/AITest55621.2022.00023

            87. SinghA., SenguptaS., & LakshminarayananV. (2020). Explainable Deep Learning Models in Medical Image Analysis. 1–19. https://doi.org/10.3390/jimaging6060052 SkuppinN., HoffmannE. J., ShiY., & ZhuX.X. (2022). EXPLAINABILITY ANALYSIS OF CNN IN DETECTION OF VOLCANIC DEFORMATION SIGNAL. 5844–5847.

            88. SmithS., PatwaryM., NorickB., LeGresleyP., RajbhandariS., CasperJ., … CatanzaroB. (2022). Using DeepSpeed and Megatron to Train Megatron-Turing NLG 530B, A Large-Scale Generative Language Model.

            89. SpeithT. (2022). A Review of Taxonomies of Explainable Artificial Intelligence ( XAI ) Methods. In 2022 ACM Conference on Fairness, Accountability, AndTransparency (FAccT’22). https://doi.org/https://doi.org/10.1145/3531146.35346391

            90. SuhB., YuH., KimH., LeeS., KongS., KimJ. W., & ChoiJ. (2023). Interpretable Deep-Learning Approaches for Osteoporosis Risk Screening and Individualized Feature Analysis Using Large Population-Based Data: Model Development and Performance Evaluation. Journal of Medical Internet Research, 25. https://doi.org/10.2196/40179

            91. ThiemeA., BelgraveD., & DohertyG. (2020). Machine Learning in Mental Health. ACM Transactions on Computer-Human Interaction, 27(5), 1–53. https://doi.org/10.1145/3398069

            92. TjoaE., & GuanC. (2021). A Survey on Explainable Artificial Intelligence (XAI): Toward Medical XAI. IEEE Transactions on Neural Networks and Learning Systems, 32(11), 4793–4813. https://doi.org/10.1109/TNNLS.2020.3027314

            93. VieiraC. P., & DigiampietriL.A. (2022). Machine Learning post-hoc interpretability: a systematic mapping study. ACM International Conference Proceeding Series, Par F18047. https://doi.org/10.1145/3535511.3535512

            94. VillarongaE. F., KiesebergP., & LiT. (2018). Humans forget, machines remember: Artificial intelligence and the Right to Be Forgotten. Computer Law and Security Review, 34(2), 304–313. https://doi.org/10.1016/j.clsr.2017.08.007

            95. ViloneG., & LongoL. (2021). Notions of explainability and evaluation approaches for explainable artificial intelligence. Information Fusion, 76(April), 89–106. https://doi.org/10.1016/j.inffus.2021.05.009

            96. WangC., & AnP. (2021). A Mobile Tool that Helps Nonexperts Make Sense of Pretrained CNN by Interacting with Their Daily Surroundings. Extended Abstracts of MobileHCI 2021 -ACM International Conference on Mobile Human-Computer Interaction: Mobile Apart, Mobile Together. https://doi.org/10.1145/3447527.3474873

            97. WangD., YangQ., AbdulA., & LimB.Y. (2019). Designing theory-driven user-centric explainable AI. Conference on Human Factors in Computing Systems -Proceedings, (February). https://doi.org/10.1145/3290605.3300831

            98. WangQ., HuangK., ChandakP., ZitnikM., & GehlenborgN. (2023). Extending the Nested Model for User-Centric XAI: A Design Study on GNN-based Drug Repurposing. IEEE Transactions on Visualization and Computer Graphics, 29(1), 1266–1276. https://doi.org/10.1109/TVCG.2022.3209435

            99. WeberP., CarlK. V., & HinzO. (2023). Applications of Explainable Artificial Intelligence in Finance—a systematic review of Finance, Information Systems, and Computer Science literature. In Management Review Quarterly. Springer International Publishing. https://doi.org/10.1007/s11301-023-00320-0

            100. WellawatteG. P., GandhiH. A., SeshadriA., & WhiteA.D. (2022). A Perspective on Explanations of Molecular Prediction Models. Chemrxiv. https://doi.org/10.1021/acs.jctc.2c01235

            101. XuW. (2019). Toward human-centered AI: A perspective from human-computer interaction. ACM, 26(4), 42–46. https://doi.org/10.1145/3328485

            102. YounisseR., AhmadA., & Abu Al-HaijaQ. (2022). Explaining Intrusion Detection-Based Convolutional Neural Networks Using Shapley Additive Explanations (SHAP). Big Data and Cognitive Computing, 6(4). https://doi.org/10.3390/bdcc6040126

            103. YükselN., Börklü, H. R., SezerH. K., & CanyurtO.E. (2023). Review of artificial intelligence applications in engineering design perspective. Engineering Applications of Artificial Intelligence, 118(April 2022), 105697. https://doi.org/10.1016/j.engappai.2022.105697

            104. ZhouB., KhoslaA., LapedrizaA., OlivaA., & TorralbaA. (2016). Learning Deep Features for Discriminative Localization. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2016-December, 2921–2929. https://doi.org/10.1109/CVPR.2016.319

            Comments

            Comment on this article