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Abstract 

Background: The development and roll-out of vaccines, and the use of various drugs 

have contributed to controlling the COVID-19 pandemic. Nevertheless, challenges 

such as the inequitable distribution of vaccines, the influence of emerging viral 

lineages and immune evasive variants on vaccine efficacy, and the inadequate 

immune defense in subgroups of the population continue to motivate the development 

of new drugs to combat the disease.  

Aim: In this study, we sought to identify, prioritize, and characterize drug repurposing 

candidates appropriate for treating mild, moderate, or severe COVID-19 using a 

network-based integrative approach that systematically integrates drug-related data 

and multi-omics datasets. 

Methods: We leveraged drug data, and multi-omics data, and used a random walk 

restart algorithm to explore an integrated knowledge graph comprised of three sub-

graphs: (i) a COVID-19 knowledge graph, (ii) a drug repurposing knowledge graph, 

and (iii) a COVID-19 disease-state specific omics graph.  

Results: We prioritized twenty FDA-approved agents as potential candidate drugs for 

mild, moderate, and severe COVID-19 disease phases. Specifically, drugs that could 

stimulate immune cell recruitment and activation including histamine, curcumin, and 

paclitaxel have potential utility in mild disease states to mitigate disease progression. 

Drugs like omacetaxine, crizotinib, and vorinostat that exhibit antiviral properties and 

have the potential to inhibit viral replication can be considered for mild to moderate 

COVID-19 disease states. Also, given the association between antioxidant deficiency 

and high inflammatory factors that trigger cytokine storms, antioxidants like glutathione 

can be considered for moderate disease states. Drugs that exhibit potent anti-

inflammatory effects like (i) anti-inflammatory drugs (sarilumab and tocilizumab), (ii) 

corticosteroids (dexamethasone and hydrocortisone), and (iii) immunosuppressives 

(sirolimus and cyclosporine) are potential candidates for moderate to severe disease 

states that trigger a hyperinflammatory cascade of COVID-19.  

Conclusion: Our study demonstrates that the multi-omics data-driven integrative 

analysis within the drug data enables prioritizing drug candidates for COVID-19 

disease phases, offering a comprehensive basis for therapeutic strategies that can be 

brought to market quickly given their established safety profiles. Importantly, the multi-
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omics data-driven integrative analysis within the drug data approach implemented 

here can be used to prioritize drug repurposing candidates appropriate for other 

diseases. 

 

 

Keywords: multi-omics, drug repurposing, random walk, COVID-19, networks 
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Background 

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the highly 

contagious and virulent coronavirus responsible for the global outbreak of coronavirus 

disease 2019 (COVID-19). Between 2020 and 2023 COVID-19 imposed an 

unprecedented burden on global public health systems and by December 2023, had 

been responsible for at least seven hundred and seventy million reported cases and 

close to seven million reported deaths [1]. 

 

The pandemic's containment and the restoration of societal normalcy have been 

achieved through two key routes: (1) the development and widespread use of SARS-

CoV-2 vaccines, and (2) the gradual increase in natural infection-acquired immunity. 

While progress has been made, critical hurdles remain, notably the need for equitable 

vaccine distribution and effective treatment options for those unvaccinated or 

immunocompromised [2]. Furthermore, there are also some concerns surrounding 

vaccine efficacy against a backdrop of waning immunity [2, 3] and the emergence of 

immune evasive viral strains [4, 5]. It is now a widely held view that COVID-19 is likely 

to transform into another endemic human coronavirus, possibly with seasonal 

epidemic waves [6]. Irrespective of the number of infections that occur or the 

intensively with which vaccines are used, it remains uncertain whether true herd 

immunity of the sorts achieved with measles and rubella will ever be achieved for 

COVID-19. 

 

While data is currently being collected and analysed to understand how newly evolved 

SARS-CoV-2 variants might impact the effectiveness of vaccines and the severity of 

future COVID-19 infection waves, there remains a demand for both host-directed and 

pathogen-directed drugs that could be utilized to treat the mild, moderate, and severe 

manifestations of the disease.  

 

In light of this, multiple existing drugs have been sought to treat or control SARS-CoV-

2 infection [7]. An example is ritonavir-boosted nirmatrelvir (paxlovid) (DrugBank: 

DB16691), a protease inhibitor used for the treatment of mild to moderate COVID-19 

in adults who are at high risk of developing severe symptoms [8]. Additionally, 

remdesivir (Veklury) (DrugBank: DB14761), an adenosine triphosphate analogue 
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targeting the conserved viral RNA-dependent RNA polymerase (RdRp), shortens the 

recovery time for adults hospitalized with COVID-19 infection and pneumonia, while 

also mitigating disease severity and associated mortality [9-11]. Other virus-directed 

antiviral drugs like favipiravir (DrugBank: DB12466), molnupiravir (DrugBank: 

DB15661), and ritonavir (DrugBank: DB00503), may also potentially improve the 

health outcomes of COVID-19 patients [12]. Furthermore, a host-directed drug such 

as dexamethasone (DrugBank: DB01234), an anti-inflammatory corticosteroid, has 

demonstrated its effectiveness in reducing mortality among severely infected patients. 

It achieves this by modulating inflammation-mediated lung injury, preventing in some 

cases progression to respiratory failure and death [13, 14].  Another host-directed 

drug, aspirin (DrugBank: DB00945) [15], decreases the risk of complications, and 

mortality in hospitalized COVID-19-infected patients [15-17].  
 

While these drugs are mainly utilized for severe COVID-19 cases, some virus-directed 

monoclonal antibodies (e.g., bebtelovimab, casirivimab) received emergency-use 

authorization at various stages of the pandemic for managing mild to moderate 

COVID-19 [18]. Additionally, other monoclonal antibodies including the combination of 

bebtelovimab, casirivimab, and imdevimab (CAS/IMDEV), and the combination of 

bamlanivimab and etesevimab (BAM/ETE) have been useful for managing mild to 

moderate COVID-19 in adults [18]. These monoclonal antibodies inhibit viral entry into 

host cells by preventing viral attachment to human ACE2 receptors. 

Host-targeted monoclonal antibodies such as tocilizumab (DrugBank: DB06273) and 

sarilumab (DrugBank: DB11767), [19-22], which modulate aberrant immune 

responses to infection by binding to the host IL6 receptor (IL6R), have also been 

granted emergency use authorization. Specifically, these IL6R-binding monoclonals 

are used for treating hospitalized adults and peadiatric patients (2 years of age and 

older) who are receiving systemic corticosteroids and require supplemental oxygen, 

non-invasive or invasive mechanical ventilation, or extracorporeal membrane 

oxygenation [22].  

Although existing drugs have been recommended for managing COVID-19, concerns 

have arisen about post-hospitalization effects and the appropriateness of using these 

drugs in different COVID-19 disease phases [23-25]. COVID-19 exhibits a wide 

spectrum of symptoms and severities, necessitating a nuanced approach to treatment. 

Personalized medicine, where the right drug is administered to the right patient group 
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at the right disease phase, could revolutionize COVID-19 treatment strategies. Hence, 

it would be useful to identify effective drugs that are specific to different phases of the 

disease, and which could also be potentially applicable to combatting any future 

emergence of other coronaviruses.  

 

Given that the development of new medications is a time-consuming process, the 

repurposing of existing medications for other indications may prove to be a viable 

alternative. However, most studies that have implemented computational methods to 

identify drug repurposing candidates for COVID-19 have so far leveraged disease-

gene associations, protein-protein interaction, and drug-target data but less 

consideration is given to the interactions between other biomedical and molecular 

features specific to different COVID-19 disease phases, such as recorded in large 

scale multi-omics profiling efforts [26-29]. Applying computational multi-omics data-

driven within drug data approaches to the repurposing of existing medications is, in 

fact, a potentially and highly efficient means of drug discovery since the 

pharmacological properties, formulations, and toxicities of such agents are already 

known [26-32]. In this study, we explore the utility of incorporating disease-state 

specific omics-graph along with drug-related data to identify drug repurposing 

candidates for mild, moderate, or severe COVID-19 disease states. We employ 

multiXrank [33], a random walk with restart (RWR) algorithm that can combine multiple 

heterogeneous networks and allows for universal multi-layer network exploration. We 

demonstrate that this integrative multi-omics network-based approach with drug data 

has the potential to repurpose drugs in different disease states and can be applied to 

other diseases. 

Materials and Methods 

Study design and procedures 

The methodology employed in this study (Figure 1) encompasses five main steps: (1) 

curation and pre-processing of data related to the action of drugs and to the molecular 

omics profiles associated with the different phases of the disease; (2) multi-layer 

network-based random walk analysis; (3) predicting drug repurposing candidates; (4) 

drug prediction robustness analysis; and (5) validation of predicted candidate drugs.  
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Drug repurposing knowledge graph, COVID-19 knowledge graph, and disease-state 
specific omics-graphs 

We utilized an existing drug repurposing knowledge graph constructed by Ioannidis et 

al., [32]. The Drug Repurposing Knowledge Graph (DRKG) is a biological knowledge 

graph relating genes, compounds, diseases, biological processes, side effects, and 

symptoms as of 2020 when it was constructed. The DRKG includes information from 

six existing databases: (1) Global Network of Biomedical Relationships (GNBR) [34], 

(2) STRING [35], (3) IntAct [36], (4) Hetionet [37], (5) DrugBank [38] and, (6) Drug-

Gene Interaction database (DGIdb) [39]. The DRKG includes 97,238 entities classified 

into 13 different node types (Table 1) and consists of 5,874,261 triplets belonging to 

107 edge types (Supplementary Table 1). We leveraged the gene-pathway and 

gene-biological process edge types (Supplementary Table 1) in the DRKG to 

construct pairwise interaction between biological processes and pathways based on 

the semantic relation that biological processes and pathways that share similar 

disease-related genes are indirectly associated. This was achieved by exploring the 

associations between genes, biological processes, and pathways to investigate the 

biological processes and pathways enriched among the disease-associated genes. 

We then paired pathways and biological processes sharing common genes.  

 

We additionally considered the COVID-19 knowledge graph (COVID-19 KG) built by 

Hsieh et al., in 2021 [30]. This COVID-KG is notable for its integration of drug data 

from the Comparative Toxicogenomics Database (CTDbase), specifically data 

available as of 2021 [40], along with protein-protein interactions involving SARS-CoV-

2 and host proteins from a study by Gordon et al., [41]. In addition to the virus-host 

interaction data, we also included SARS-CoV-2 and host protein interactions from 

IntAct database [36]. The SARS-CoV-2 and host protein interactions data extracted 

from IntAct were derived from several studies that examined protein-protein 

interactions between SARS-CoV-2 and humans. Following the merge of the COVID-

KG and virus-human protein interaction data, the resulting graph represents the 

interactions between entities belonging to 5 different node types (Table 2) and 

consists of 33,621 triplets belonging to 5 edge types (Supplementary Table 2). 

Furthermore, we considered disease-state specific omics-graphs (DSOG) constructed 

from our previous study, Agamah et al., [42] for downstream analysis. The DSOG were 
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constructed by integrating harmonized proteomics, transcriptomics, metabolomics, 

and lipidomics datasets retrieved from Overmyer et al., [43] and Su et al., [44] together 

with a unified knowledge graph, assembled by merging protein-protein interactome, 

metabolite-metabolite interactome, transcript-transcript, and lipid-lipid interactome 

curated from literature and databases [42]. The DSOG consisted of four node types 

(i.e., protein, transcript, metabolite, lipid) and nine edge types (i.e., protein-protein, 

transcript-transcript, metabolite-metabolite, lipid-lipid, protein-transcript, protein-

metabolite, transcript-metabolite, protein-lipid, and transcript-lipid). 

 

The process used to construct the graphs is described in Agamah et al., [42]. In 

summary, the World Health Organization (WHO) Ordinal Scale (WOS) was used as a 

disease severity reference to harmonize COVID-19 patient metadata across the 

Overmyer et al., [43] and Su et al., [44] studies. This harmonized metadata was then 

used to categorize the multi-omics data into mild, moderate, and severe COVID-19 

disease phases. Subsequently, a correlation network approach was implemented to 

construct co-expression networks for proteomics, transcriptomics, metabolomics, and 

lipidomics data for each disease state. The co-expression networks generated were 

integrated/merged based on the disease state and omics data type to construct 

disease-state specific omics-graphs. 

Overall, these above data sources were used to construct a unified and integrated 

knowledge graph comprised of three sub-graphs including COVID-19 KG, DRKG, and 

the DSOG from which we conducted an in-depth quality check (see the section below), 

prioritize, characterize, and repurpose specific drugs for the mild, moderate, and 

severe state of COVID-19. 

Data pre-processing, quality control, and filtering 

We observed differences in the gene and drug identifiers across the DRKG and 

COVID-19 KG. To achieve consistency in the identifiers across the datasets, we 

mapped gene identifiers to gene symbols using the UniProt database resource [45], 

and drug identifiers to drug names using the DrugBank database [38]. To identify 

clinically approved drugs with known safety profiles and pharmacokinetic properties, 

we filtered/cleaned the drug-related data by maintaining (1) drug-drug interactions 

between FDA-approved drug candidates, (2) drug-protein/gene interactions between 
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FDA-approved drug candidates and proteins/genes, (3) biological process/pathways-

chemical interactions between biological processes/pathways and FDA approved 

chemicals. As our investigation is centered around identifying potential repurposable 

drugs for COVID-19, we took additional measures to refine our analysis. To prioritize 

approved drugs with known safety profiles for COVID-19, we specifically removed 

interactions involving drugs that have been studied (based on literature evidence) and 

found to lack therapeutic effectiveness in treating COVID-19, as is the case with 

quinolones like chloroquine and hydroxychloroquine [46, 47]. Moreover, we omitted 

certain endogenous substances including hormones such as progesterone, 

testosterone, and melatonin, as well as alcohol (ethanol), various compounds like 

cholesterol, and cocaine, and gases such as oxygen, and hydrogen from our analysis.  

Random walk with restart network analysis 

The random walk method is a technique for detecting the spread of biological 

information through networks. The concept behind the random walk method is such 

that a hypothetical particle exploring the network structure takes discrete steps (walks) 

in some direction from a seed node [48]. The walk explores different layers based on 

the premise that nodes related lie close to each other in the network [48]. To perform 

random walk with restart (RWR) network analyses, we utilized multiXrank [33], a RWR 

on a multilayer network algorithm, to explore the disease-state specific omics-graphs, 

COVID-KG and DRKG. Whereas the multiXrank algorithm enables random walk 

analysis on multiple large multidimensional datasets in a multilayer network 

framework, other methods are limited in the combination and heterogeneity of 

networks that they can handle [49]. In brief, the first step of the algorithm is to create 

adjacency matrices for the input graphs, followed by computing different transition 

probabilities of the random walk with restart on the graphs. The probabilities are 

estimated based on the concept that an imaginary particle starts a random walk from 

the seed node to other nodes in the network. These different transition probabilities 

describe the walks within a graph and the jumps between graphs. A higher probability 

score (close to 1) suggests a higher likelihood of walking or jumping between graphs.  

We made specific adjustments to the algorithm's configuration script based on the 

input datasets. While the global restart probability was set at 0.7, the intra-layer jump 

probability and the probability to restart in a specific layer were set to 0.5 and 1, 
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respectively. Other parameters such as inter-layer jump probability were fine-tuned to 

align with the number of input graph layers. We set parameters in the algorithm to 

control the behaviour of the algorithm to achieve desired outcomes. 

 

As a result of this analysis, we obtained multi-layered graphs that detailed the 

exploration of seed nodes across various omics layers and drug data, along with a 

ranked list of features in each graph layer. 

RWR analysis on DRKG, COVID-19 KG, and DSOG 

We performed an initial analysis focused on identifying drugs that can be repurposed 

for COVID-19 without accounting for omics profiles. Thus, we employed DRKG and 

COVID-19 KG as the input data sources in the RWR algorithm to predict candidate 

drugs for COVID-19. The algorithm accepts as layers, monoplex graphs, and/or a 

combination of monoplex graphs (multiplex).  Specifically, in our analysis, edge-types 

with the same node entities including the drug-drug and gene-gene interactions each 

served as a monoplex and were interconnected by edge-types with different node 

entities including the gene-drug, pathway-gene, phenotype (biological process)-gene, 

phenotype (biological process)-drug, and SARS-CoV-2-host gene interactions 

(Supplementary Table 1 and Supplementary Table 2).  

In subsequent analysis to predict potential drugs for different COVID-19 disease 

states, we utilized DRKG, COVID-19 KG, and DSOG as input data. Herein, the input 

data included the proteomics, transcriptomics, metabolomics, and lipidomics disease-

state graphs which also served as individual monoplex layers. Similar to the analysis 

on DRKG and COVID-19, graphs with edges-types of the same node entities were 

interconnected by graphs with edge-types of different node entities including the 

protein-transcript, protein-metabolite, transcript-metabolite, protein-lipid, and 

transcript-lipid interactions from the DSOG which were not utilized in the previous 

analysis. 

Prediction of drugs using the RWR algorithm is based on a network exploration 

process where simulated particles walk iteratively from one node to one of its 

neighbours with some probability. In this process, the walk is restricted to restart from 

seed nodes to prevent the random walker from being trapped in dead-ends [48].  
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Selection of seeds for RWR based on a hypothesis- and data-driven approach  

To select seed nodes for the analysis, we implemented two approaches: (1) a 

hypothesis-driven approach where we selected seeds based on their impact on 

disease severity to test the hypothesis of their differential associations with mild, 

moderate, and severe COVID-19 disease states, and (2) a data-driven approach 

where we selected, after merging the different co-expression networks, the features 

with the highest node integrated centrality score in each omics layer as seeds. The 

hypothesis-driven has the advantage of bringing the question being investigated into 

focus by designing the model with a specific biological hypothesis in mind and 

exploring variations across disease phases, whereas the data-driven approach, 

enables a more unbiased and informed model [50, 51]. Although hypothesis- and data-

driven modelling approaches are not mutually exclusive, it is worth noting that this 

diversity is beneficial: most model-building tools and models have a specific and clear 

role, however at the same time, combining hypothesis- and data-driven approaches in 

an interoperable way, provide an immense impact on our understanding of the disease 

phases as modelling and integrating data at different biological scales [50, 51]. 
 

Interleukin-6 (IL-6) and interleukin 6 receptor (IL-6R) features were used as 

hypothesis-driven seeds for the random walk analysis because of the evidence for 

their significant role in the pathology of SARS-CoV-2 and COVID-19 [52-54]. IL-6 is a 

cytokine, a type of signalling molecule involved in various inflammatory and immune 

responses. The inflammatory response plays a critical role in COVID-19, with an 

excessive inflammatory response leading to a “cytokine storm” increasing the severity 

of COVID-19. Since IL-6 interacts with cells via IL-6R, it has been hypothesized that 

inhibition of IL-6R might reduce the likelihood of cytokine storms developing, 

ameliorate the symptoms of severe COVID-19, and reduce mortality [49]. In this 

context, we, therefore, used IL-6 and IL-6R as hypothesis-driven seeds in a RWR 

analysis that we refer to as our “hypothesis-driven approach”. 

 

For a random walk with restart using data-driven seeds, we selected seeds following 

the approach described in our previous study [42]. Specifically,  we selected, after 

merging the different co-expression networks, the features with the highest integrated 

centrality score in each omics layer [42]. The features were ranked by leveraging the 
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node degree, closeness, betweenness, and eigenvector centrality metrics to compute 

an integrated score (see Supplementary data equation 1). These centrality metrics 

provide insight into the importance of a node. For instance, the closeness metric 

measures how close a node is to all other nodes in the network. A lower closeness 

centrality score indicates the node is on average closer to other nodes, potentially 

making it a faster "information hub." The degree metric measures the number of 

connections (edges) a node has with other nodes. A higher degree signifies the node 

has more direct connections, suggesting it might be more influential or receive more 

information flow. The betweenness metric captures how often a node lies on the 

shortest path between other pairs of nodes in the network. A higher betweenness 

score suggests the node acts as a crucial bridge for information flow within the 

network. The eigenvector metric considers goes beyond the number of connections 

and considers the "importance" of a node’s neighbours. Nodes with high eigenvector 

centrality are considered influential due to their connections to other influential nodes. 

By integrating these diverse perspectives, the calculated score provides a 

comprehensive understanding of a node's relative importance within the network 

structure and its potential role in information flow and communication. Herein, RWR 

analysis using the data-driven seeds is referred to as our “data-driven approach”. 

Ranking candidate drugs for COVID-19 disease states  

The RWR approach has the benefit of capturing the global topology of a graph and 

representing a measure of proximity from all the nodes to the seed(s) based on the 

graph topology [55]. The measure of proximity between nodes is a relevant measure 

quantifying how closely connected a node is with the seeds and can be used to rank 

nodes [48, 55, 56]. In this study, nodes within each layer were ranked based on their 

measure of proximity to the seed nodes. The measure of proximity was the geometric 

mean of the node’s proximity to the seeds [48].  
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Results 

Predicting candidate drugs using existing knowledge graphs and hypothesis-driven 
seeds. 

To predict potential COVID-19 drugs, we systematically analysed the DRKG and 

COVID-19 KG excluding disease-state specific omics-graphs by implementing a 

random walk with restart analysis (Materials and Methods). The random walk with 

restart is an approach that allows for the exploration of the disease-state specific 

omics-graphs, COVID-19 KG, and DRKG to identify patterns and prioritize features 

within the network. The algorithm, multiXrank, conducts multiple random walks over 

the graphs, each originating from the seed nodes. These walks iteratively traverse 

from one node to a neighbouring node at random, thus simulating a pattern that results 

in a multi-layered graph. In our hypothesis-driven approach, we selected, IL-6 and IL-

6R as seeds given their established roles as aggravators of the disease. The random 

walk process restricts the restarts from seed nodes (IL-6 and IL-6R) during network 

exploration. The RWR analysis revealed a multi-layered graph describing the random 

walks from the seed nodes (Figure 2) and a set of potential therapeutics (Table 3) for 

the treatment of COVID-19. These included immunosuppressants, vital minerals, 

anticancer agents, antivirals, antibiotics, angiotensin receptor blockers, and 

corticosteroids (as detailed in Table 3). Notable among these are presently 

recommended drugs for treating the disease such as tocilizumab [22, 57, 58], 

dexamethasone [13, 14], and losartan [59, 60]. Furthermore, our analysis pinpointed 

additional potential pharmaceutical options, such as cannabidol and doxorubicin [61-

63]. While these have yet to be definitively endorsed for COVID-19 treatment, prior 

research indicates their potential candidacy based on their efficacy and merits for 

further experimental validations [61, 64]. Figure 2 shows a multi-layered graph 

generated from the RWR analysis highlighting interactions involving highly ranked 

drug candidates and other features such as IL2, IL1B, HCK, and TYK2.  
 
Predicting candidate drugs using existing knowledge graphs, disease-state specific 
omics-graphs, and hypothesis-driven seeds 

To discover potential candidate drugs that could be used to specifically treat the 

disease in either its mild, moderate, or severe phases, we employed the RWR method 

in a network-based approach utilizing the knowledge graphs (DRKG and COVID-19 
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KG), alongside the disease-state specific omics-graphs encompassing 

transcriptomics, proteomics, metabolomics, and lipidomics data (Materials and 
Methods). The outcome of the RWR analysis is a ranked list of potential drugs and a 

multi-layered graph describing the random walks from the seed nodes (IL-6 and IL-

6R). Across different analyses of the mild, moderate, and severe disease states we 

consistently identified the same sets of drugs (Table 4) that could potentially be 

impactful during COVID-19 treatment. Notably, our analysis revealed that drugs known 

to suppress the immune response and reduce inflammation, including those promoting 

interleukin-6 (IL-6) production, consistently ranked high across all investigated disease 

states (Table 4). This observation aligns with expectations, considering our choice of 

IL-6 and IL-6R as seeds: both are pivotal biomarkers identified in multiple studies as 

displaying expression levels that are positively associated with severe disease states 

[65, 66]. These biomarkers are prominently expressed during cytokine storms that are 

characteristic of severe COVID-19 cases [66]. 

 

We observed differences between the multi-layered graphs generated by the RWR 

analysis on the mild, moderate, and severe disease states. Specifically, these 

differences were observed in the levels of connectivity between molecular features 

and the drug repurposing candidates. We therefore performed network topology 

analysis on the multi-layered graphs generated from the RWR analysis to explore the 

differences between these graphs and how that can provide more insights into the use 

of predicted drugs across mild, moderate, and severe disease states. First, we 

evaluated the degree, betweenness, and closeness measures of the drug repurposing 

candidates and observed relatively similar scores (Table 5). The node degree 

indicates the number of connections a drug has, revealing its involvement in broader 

disease processes. Higher degrees might suggest broader applicability across 

multiple diseases. The betweenness centrality measures a drug's "traffic control" role, 

indicating how often it lies on the shortest paths between other nodes. High 

betweenness suggests a potential "bridge" molecule connecting different disease 

pathways. The closeness centrality reflects how quickly information can reach other 

disease elements or nodes from a candidate drug. High closeness suggests a central 

position within the disease network, potentially making it a good starting point for 

treatment. For instance, cyclosporine had a higher degree of 6 in the multi-layered 

graph generated by RWR analysis on the moderate disease state as compared degree 
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of 5 in the multi-layered graph generated by RWR analysis on the mild disease state 

and a degree of 4 in the multi-layered graph generated by RWR analysis on the severe 

disease state with a corresponding high betweenness score of 0.0014 and closeness 

score of 0.4832 suggesting it might have potential utility for moderate disease state. 

Similarly, mycophenolic acid had a higher degree of 5 in the multi-layered graph 

generated by RWR for moderate disease state as compared to a degree of 4 in both 

multi-layered graph generated by RWR analysis on the mild and multi-layered graph 

generated by RWR analysis on the severe disease state with a corresponding high 

betweenness score of 0.009 and closeness score of 0.4739 also suggests it might 

have potential utility for moderate disease state. 

 

Next, we evaluated the contribution of other molecular features in the networks. To 

begin with, beyond the central influence of top-ranked drugs (dexamethasone, 

tocilizumab, and sarilumab) in the multi-layered graph generated from the RWR 

analysis on the mild disease state (Figure 3A), three key inflammatory-related 

features: C-C Motif Chemokine Ligand 2 (CCL2), C-C Motif Chemokine Ligand 4 

(CCL4), and Negative Elongation Factor Complex Member C/D (NELFCD) formed 

distinct subnetworks, acting as crucial hubs that connected seed nodes and promising 

candidates for drug repurposing. In mild COVID-19 cases, CCL2 helps recruit 

monocytes and macrophages, which are essential for fighting the virus as compared 

to excessive immune cell recruitment in severe disease states [67, 68]. Also, CCL4 

levels in mild disease states help recruit necessary immune cells to fight the virus [69]. 

Thus, using drug repurposing candidates that could influence the recruitment of 

immune cells in mild disease states could be more appropriate, acknowledging the 

fact that the development of clinical COVID-19 involves cell activation such as 

dysfunctional mast cell activation [70]. From the predicted drugs, histamine is a 

biogenic amine known to attract and activate immune cells, particularly mast cells, 

basophils, neutrophils, and certain T cells, through specific histamine receptors [71]. 

Histamine can stimulate mast cell degranulation, leading to the release of CCL4 and 

CCL2 among other inflammatory mediators [72, 73]. This suggests a potential indirect 

link between histamine and these chemokines in inflammatory processes. Paclitaxel 

is known to modulate the immune system in various ways, including; (1) promoting the 

migration of T cells and other immune cells into tumours, (2) enhancing the activity of 

antigen-presenting cells, vital for activating T cells, and (3) modulating the expression 
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of immune-related genes that influence inflammation and immune responses. 

Paclitaxel induces the release of cytokines like TNF, and IL-6 and chemokines like 

CCL2, and might, therefore, help control viral infection by stimulating immune cell 

recruitment and boosting immune responses [74]. Metformin might enhance the 

activity of certain immune cells like macrophages and natural killer cells potentially 

aiding in viral clearance [75, 76]. Metformin activates AMPK, a cellular energy sensor 

that regulates various metabolic and inflammatory processes [77]. AMPK activation 

can downregulate pro-inflammatory signalling pathways and reduce the production of 

inflammatory mediators like TNF and IL-6 [78].  

The NELFCD, as part of NELF, regulates RNA polymerase II pausing, potentially 

influencing viral RNA synthesis during viral genome replication [79]. This suggests that 

drugs with the potential to inhibit SARS-CoV-2 replication could be appropriate for 

repurposing. Such drugs would include, for example, dactinomycin which is, besides 

having immune-modulatory properties also inhibits viral genome replication [80, 81]. 

 

Analysis of the multi-layered graph generated by the RWR analysis during predictions 

for moderate disease state identified NELFCD, Nuclear Factor Kappa B Subunit 1 

(NFKB1), and interleukin 10 (IL-10) as hubs influencing the network based on their 

high connectivity, forming both direct and indirect pathways between the seed nodes 

and the top candidates for drug repurposing (Figure 3B). NFKB1 activates genes 

encoding pro-inflammatory cytokines, chemokines, and adhesion molecules, 

orchestrating the body's initial response to viral infection and enhancing the severity 

of COVID-19 symptoms [82, 83]. Thus, moderating  NFKB1 activity could mitigate 

cytokine storms and improve outcomes. Corticosteroids like dexamethasone can be 

used in severe COVID-19 to suppress NFKB1 activity and reduce inflammation. It is, 

however, important to note that while dampening NFKB1 can be beneficial, completely 

suppressing it could impair the body's ability to fight the virus. Thus, finding the right 

balance remains crucial. IL-10 is a natural anti-inflammatory cytokine, acting as a 

brake on the immune response. It helps control excessive inflammation, as disease 

severity progresses, particularly in moderate disease states, to prevent tissue 

damage. However, overactive IL-10 production in moderate COVID-19 cases can 

dampen the immune system's ability to fight the virus, potentially prolonging the 

infection and allowing persistent viral replication. From our results (Figure 3B), drugs 

with the potential to modulate IL-10 activity could be beneficial during moderate 
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disease states to balance the suppression of excessive inflammation with optimal 

immune functioning. For instance, sirolimus inhibits the mammalian target of the 

rapamycin (mTOR) pathway, which can indirectly suppress IL-10 production by limiting 

STAT3 signalling [84, 85]. Also, it can dampen the activation of certain immune cells 

like T cells, which may indirectly decrease IL-10 production. Additionally, sirolimus 

promotes the differentiation and expansion of regulatory T cells (Tregs), a subset of T 

cells that naturally suppress inflammation and can promote IL-10 production as part 

of their suppressive function [86]. 

 

In the multi-layered graph generated by the RWR analysis during predictions for 

severe disease state  (Figure 3C), we observed key inflammation-related features like 

C-X-C Motif Chemokine ligand 1 (CXCL1), C-C Motif Chemokine ligands 4 (CCL4), 

and Janus Kinase 2 (JAK2) to establish subnetworks which included both direct and 

indirect interactions with the seed nodes and top-ranked drug candidates (Figure 3C). 
JAK2, a signalling molecule inside immune cells, expresses both inflammatory and 

anti-inflammatory effects during COVID-19. For its inflammatory role, JAK2 activates 

certain signalling pathways including Janus kinase 2/signal transducer and activator 

of transcription 3 (JAK2/STAT3) pathway that trigger inflammatory responses in the 

lungs, which may help fight viral infections [87]. In its anti-inflammatory role, JAK2 also 

activates pathways promoting tissue repair and regeneration. Thus, drug repurposing 

candidates with the potential to influence JAK2 signalling, may represent an effective 

therapeutic strategy for controlling the disease [88]. For instance, IL-6 binds to soluble 

and transmembrane IL-6R and the resultant complex induces homodimerization of 

gp130, leading to activation of JAK2 [89]. This suggests that sarilumab and tocilizumab 

targeting the IL-6 receptor, indirectly activate JAK2 downstream by limiting the IL-6-

mediated signalling pathway [89, 90]. Sirolimus targeting a mTOR pathway connected 

to JAK2 can be appropriate. Increased levels of CXCL1 and CCL4  have been 

associated with severe disease and hyperinflammatory states, suggesting a potential 

role in COVID-19 disease progression [68, 91]. In general, the drug repurposing 

candidates (Table 4) with anti-inflammatory activities, immunomodulatory activities, 

and viral replication inhibitory activities have the best potential to manage excessive 

inflammation and limit viral persistence during the severe disease state. We further 

observed from shortest path analysis how these molecular features act as mediators 
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connecting the drug repurposing candidates to the seed nodes across mild, moderate, 

and severe disease states (Supplementary File 4). 

 

Predicting candidate drugs using existing knowledge graphs, disease-state specific 
omics-graphs, and data-driven seeds 

To investigate the prediction of drugs that might be differentially applicable to treating 

different COVID-19 disease states, we used a data-driven approach to identify seeds 

by computing an integrated node centrality metric score leveraging the node degree, 

closeness, betweenness, and eigenvector centrality metrics (see Materials and 
Methods). 

 

In the transcriptomics layer, we identified Signal Transducer And Activator Of 

Transcription 1 (STAT1) as a seed node. STAT1 is known to be involved in immune 

responses and antiviral activity [68] and is reported to be upregulated in mild and 

severe COVID-19 cases, with the phosphorylation of the gene associated with both 

the upregulation of ACE2 expression and the development of severe disease states 

[92, 93]. In the proteomic layer, Superoxide Dismutase 2 (SOD2) was identified as a 

seed node.  SOD2 is an essential antioxidant enzyme that protects cells from 

superoxide radical anions which are known to be significantly under-expressed in the 

plasma [94] and lung cells of severe COVID-19 patients [95].  In the metabolomics 

layer, 3-hydroxyoctanoate was identified as a seed node. This metabolite is generated 

during medium-chain fatty acid oxidation and serves as a marker for primary defects 

in beta-hydroxy fatty acid metabolism. It is also affiliated with essential pathways such 

as those responsible for macrophage activation and platelet aggregation, with 

increases in 3-hydroxyoctanoate concentrations being associated with asymptomatic 

COVID-19 infections [96]. In the lipidomics layer, we identified 

“unknown_mz_815.61548_+_RT_27.063”, an uncharacterized lipid associated with 

disease severity as a seed node. 

 

Using these seed nodes for RWR analysis across the various disease states, we 

identified several potential drug repurposing candidates (Table 6) including “natural 

compounds” (such as glutathione and curcumin) and inhibitors of signal transduction 

pathways of protein kinases and cell proliferation (tyrosine, histone deacetylase, and 
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methyltransferase). The results revealed the same drug repurposing candidates 

across the various disease states (Table 6). However, network topology analysis 

revealed differences between the multi-layered graphs generated by the RWR 

analysis (Figure 4A-C). Specifically, these differences were observed in the 

connectivity of the drug repurposing candidates with corresponding node degree,  

betweenness centrality, and closeness centrality scores (Table 7). This provides more 

insights into the most appropriate drug repurposing candidates for the different 

disease states. For instance, curcumin had a higher degree of 1,076 in the multi-

layered graph generated by the RWR analysis on mild disease state as compared to 

a degree of 4 in the multi-layered graph generated by the RWR analysis on moderate 

disease state and a degree of 2 in the multi-layered graphs generated by the RWR 

analysis on severe disease state. Podofilox had a higher degree of 478 in the multi-

layered graph generated by the RWR analysis on severe disease state as compared 

to a degree of 2 for both multi-layered graphs generated by the RWR analysis on mild 

and moderate disease states.  Therefore, whereas curcumin is an appropriate drug 

repurposing candidate with potential utility during mild COVID-19, podofilox is an 

appropriate drug repurposing candidate with potential utility during severe COVID-19. 

Furthermore, vinblastine's high degree of 1,905 in the multi-layered graph generated 

by the RWR analysis on moderate disease state and a degree of 1,378 in the multi-

layered graph generated by the RWR analysis on severe disease state as compared 

to a degree of 4 in the multi-layered graph from the RWR analysis on mild disease 

state. This suggests that vinblastine might be most effective in tackling advanced 

disease stages. Also, crizotinib's high degree of 1,919 in the multi-layered graph 

generated by the RWR analysis on mild disease state and a degree of 1,947 in the 

multi-layered graph generated by the RWR analysis on moderate state as compared 

to a degree of 2 in the multi-layered graph from the RWR analysis on severe disease 

state indicates it might be most appropriate for treatment of the mild and moderate 

stages of COVID-19 (Table 7). Similarly, glutathione’s high degree of 212 in the multi-

layered graph generated by the RWR analysis on mild disease state and a degree of  

234 in the multi-layered graph generated by the RWR analysis on moderate disease 

state as compared to a degree of 118 in the multi-layered graph from the RWR 

analysis on severe disease state suggests it can be a promising drug repurposing 

candidate for the mild and moderate disease states. Noticeably, nodes with higher 

degree scores (Table 7) have higher betweenness and closeness scores revealing 
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how often these nodes lie on the shortest paths between other nodes in the network 

and mediate how quickly information can reach other disease-related features from a 

candidate drug (Supplementary File 5). Such nodes have high relevance within 

biological systems and, besides their specific biological activities, might also facilitate 

communication and synergy between biological pathways, making them key targets 

for the management of the disease. 

 

Analysis of the multi-layered graphs generated by the RWR analysis revealed several 

features that establish subnetworks (Figure 4). Specifically, we observed the CCL4 to 

establish subnetwork in the mild disease state and Hepatocyte Growth Factor (HGF) 

to establish subnetworks in both moderate and severe disease states. HGF expresses 

anti-inflammatory properties and plays a complex and multifaceted role in the battle 

against COVID-19 [97]. While it initially acts as a crucial player in lung tissue repair 

following viral damage, its activity can also contribute to excessive inflammation if not 

properly regulated [97]. HGF can activate certain signalling pathways that promote 

inflammation in moderate to severe cases. On the other hand, up-regulation of HGF 

represents a robust counter-regulatory mechanism employed by the host immune 

response to counteract pro-inflammatory cytokines. 

 

Drug prediction robustness analysis 

The three highest-ranked candidate drugs yielded by both the hypothesis-driven 

approach (dexamethasone, sarilumab, tocilizumab) and the data-driven approach 

(glutathione, crizotinib, and curcumin) are all known to be efficacious in controlling 

moderate to severe COVID-19. However, the high rankings of these drugs (based on 

measures of proximity) are expected simply because their efficacy during moderate to 

severe COVID-19 treatment has been comprehensively reported on in the literature 

up to 2021. These reports are reflected in the COVID-19 KG layers of our networks. 

In this section, we removed direct interactions between the top three predicted 

potential drug candidates identified using the hypothesis-driven and data-driven 

approaches, and other features (such as drugs, proteins, and transcripts) to assess 

the influence of these interactions and features on the drug predictions. We assessed 

the robustness of the drug predictions in both the hypothesis-driven and data-driven 

approaches by repeating the RWR analysis (as described in the materials and 
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methods) after individually and collectively removing direct interactions associated 

with the three highest-ranked candidate drugs and examining changes in the drug 

rankings. 

 

These analyses yielded a relatively consistent trend (Supplementary Files 1 and 2): 

drugs such as sirolimus, histamine, cyclosporine, and vorinostat that initially ranked 

below the drugs that were removed tended to achieve higher rankings following the 

removal of the initial top-ranked drug candidates. The measure of proximity of the 

drugs that attained elevated rankings varied from one drug removal experiment to the 

next, but generally increased relative to the measure of proximity that the drugs 

obtained in the absence of any exclusions (Supplementary Files 1 and 2).  

Further, the drug removal analyses revealed additional candidate drugs that were not 

apparent in the absence of drug removal. For instance, with the hypothesis-driven 

approach, when we removed dexamethasone and tocilizumab simultaneously for 

each disease state, drugs like dinoprostone, and perhexiline emerged among the top 

drug candidates across the mild, moderate, and severe disease states 

(Supplementary File 1). Similarly, when we removed sarilumab, we observed 

ketamine, acetylsalicylic acid (aspirin), and menadione in the top 20. Concurring with 

the individual drug removal, when dexamethasone, tocilizumab, and sarilumab were 

collectively removed, we observed dinoprostone, perhexiline, menadione, iron, and 

ketamine all entered the top 20 for the disease states.  

 

When we excluded the top-ranked drug candidates that were revealed by the data-

driven approach (glutathione, crizotinib, and curcumin) we observed similar ranking 

score changes to those seen with the drug candidates identified by the hypothesis-

driven approach. For example, when glutathione was removed, the measure of 

proximity of both lL-glutamine and carglumic acid dropped substantially (from 

0.0000945 and 0.0000942 to 0.0000022 and 0.0000594) resulting in lower rankings 

whereas thimerosal disappeared completely (Supplementary File 2). This 

observation could be partly because (1) thimerosal interacted with nodes that 

established connections with glutathione and crizotinib, and (2) thimerosal established 

direct interactions with glutathione and crizotinib.  

When glutathione, crizotinib, and curcumin were collectively removed, several notable 

drug candidates surfaced among the top hits, including penicillamine, pregabalin, 
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dexamethasone,  midostaurin, and treprostinil (Supplementary File 2). Similar to 

when crizotinib and curcumin were individually removed, the measure of proximity of 

l-glutamine and carglumic acid increased from 0.0000945 and 0.0000942 to 

0.0001621 and 0.0001629 for crizotinib removal, and from 0.0000945 and 0.0000942 

to 0.0001306 and 0.0001308 for curcumin removal respectively (Supplementary File 
2).  

In silico validation of top hit candidate drugs 

To validate the COVID-19 drug predictions, we aimed to investigate how enriched the 

potential candidate drugs are as anti-COVID drugs in other databases. Specifically, 

we conducted RWR analyses using hypothesis-driven seeds on drug data extracted 

from DrugCombDB (version 2.0), a drug resource database [98]. We implemented 

these analyses to investigate whether we were able to predict known efficacious 

COVID-19 drugs (Table 4). Among the top-ranked drugs (Supplementary File 3) 

revealed by these analyses were dexamethasone (rank 1), simvastatin (rank 7), 

cyclosporine (rank 8), hydrocortisone (rank 9), paclitaxel (rank 11), indomethacin (rank 

15), and methotrexate (rank 16). 

Discussion 

In this work, we employed computational analyses for the prediction of drug 

repurposing candidates tailored for disease-state-specific COVID-19 treatment. 

Leveraging a combination of knowledge graphs (DRKG and COVID-19 KG), along 

with COVID-19 disease-phase specific omics-graphs generated from experimental 

proteomics, transcriptomics, metabolomics, and lipidomics data, enabled the 

identification of various drug repurposing candidates that could potentially be useable 

as treatments for specific COVID-19 disease states. We implemented multiXrank, a 

random walk algorithm capable of handling multiple multi-layered graphs and 

integrated drug data to predict candidate drugs for the mild, moderate, and severe 

COVID-19 disease states. The analysis resulted in the generation of multi-layered 

graphs that described the exploration of seed nodes across different disease-state 

specific omics-graphs.  
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Although the hypothesis-driven and data-driven methodologies differed, the findings 

from both approaches have contributed to prioritizing potential drug repurposing 

candidates for mild, moderate, and severe COVID-19. The hypothesis-driven 

approach revealed mostly drugs known to suppress the immune response and reduce 

inflammation, including those promoting interleukin-6 (IL-6) production. In contrast, the 

data-driven approach revealed more diverse drugs including “natural compounds” 

(such as glutathione and curcumin) and inhibitors of signal transduction pathways of 

protein kinases and cell proliferation (tyrosine, histone deacetylase, and 

methyltransferase). The random walk analysis using both the hypothesis-driven and 

data-driven approaches yielded distinct multi-layered graphs (Figure 3 and Figure 4) 

characterized by different hubs and interactions with the candidate drugs, highlighting 

the unique perspectives offered by each method.  With these differences, a consistent 

finding emerged from both approaches: cross-layer interactions between omics 

features and drug repurposing candidates play a role in the dynamics of the drugs at 

the different disease states.  

 

Some of the drugs identified through both hypothesis-driven and data-driven 

approaches are being or have already been, tested in various clinical trials to assess 

their efficacy and effectiveness in the treatment of COVID-19. For instance, from the 

hypothesis-driven approach, corticosteroids such as dexamethasone and 

hydrocortisone have demonstrated an association with lower 28-day all-cause 

mortality in critically ill patients with COVID-19 [99]. Also, mycophenolic acid which 

has been investigated and validated to reduce mortality and hospital stays in patients 

with moderate to severe COVID-19 [100], and indomethacin which has been found in 

clinical trials to be safe and effective for treating mild and moderate COVID-19 cases 

[64], and the diabetes medication, metformin, which exhibits potential in reducing 

prolonged illness by inhibiting virus replication when administered during the acute 

phase of COVID-19 [101]. From the data-driven approach antihelminthic drug 

mebendazole, enhanced innate immune responses and restored inflammation to 

normal levels in symptomatic non-hospitalized COVID-19 patients during a recent 

clinical trial [102]. Also, etoposide has been investigated for its potential to treat severe 

disease, albeit with observed adverse events that warrant further investigation [103]. 
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In general, immunosuppressive drugs might have a beneficial effect in the moderate 

to severe phase of COVID-19 because it is in this phase when dysregulated pro-

inflammatory immune responses can precipitate tissue damage and result in acute 

respiratory distress syndrome, organ failure, and mortality [104]. On the other hand, 

drugs predicted using the data-driven approach either had antioxidant properties (such 

as glutathione, and curcumin), or were inhibitors of tyrosine kinase, histone 

deacetylase, methyltransferase, and protein synthesis (Table 6). The antioxidants can 

protect immune system cells and those directly targeted by SARS-CoV-2 from 

oxidative stress. For example, glutathione is an antioxidant assumed to have a vital 

role in maintaining the balance of reactive oxygen species (ROS), and aids in diverse 

cellular processes including immune responses [105, 106]. Notably, oxidative stress 

reflects an imbalance between ROS generation and antioxidation mechanisms [107] 

and plays an important role in COVID-19 onset, progression, and severity [108-110], 

possibly by exacerbating inflammation and tissue damage [111]. This therefore 

suggests that glutathione's capability to counteract ROS and diminish oxidative stress 

holds promise for mitigating some of the adverse effects inflicted by the virus [105]. 

Glutathione and SOD2 bring unique strengths such that their combined efforts provide 

a multi-layered defence against oxidative stress and its harmful consequences. By 

neutralizing superoxide radicals, SOD2 sets the stage for glutathione to efficiently 

handle other free radicals and detoxify the cell. Also, given the aggressive 

inflammatory response and the production of cytokines occurring during severe 

COVID-19 disease states, some known inhibitors of receptor tyrosine kinases and cell 

proliferation, such as crizotinib and vorinostat, have been investigated as COVID-19 

treatments [112, 113]. For instance, a recent study has shown that histone 

deacetylase inhibitors modulate immune responses in stimulated monocytes [113], 

whereas tyrosine kinase inhibitors have the potential to reverse pulmonary 

insufficiency because of their anti-inflammatory activities, cytokine suppression 

activities, or antifibrotic activities [112].   

 

Overall, the prioritized drug repurposing candidates (Table 3, Table 4, and Table 6) 

exhibit the potential to target a multitude of specific biological pathways and gene 

ontology processes that are associated with COVID-19 outcomes. Among these 

candidates are those that have shown promise in treating other diseases or conditions 

such as cancer, malaria, viral infections, and obstructive pulmonary disease. For 
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instance, glutathione shows activity against HIV, influenza A, and hepatitis C by 

inhibiting viral replication and modulating immune response [114]. Curcumin shows 

activity against HIV, influenza A, hepatitis C, and Dengue virus by inhibiting viral entry 

and replication [115]. Vorinostat shows activity against HIV by inhibiting viral 

replication and disrupting HIV-1 latency in patients on antiretroviral therapy [116]. 

Consequently, there is the possibility of repurposing these to combat COVID-19 and 

other virus-induced conditions.  

 

The approach implemented in this study is relevant to identifying drugs that warrant 

further exploration. It is important to mention that some of the drugs that were highly 

ranked in our hypothesis-driven and data-driven analyses as potential COVID-19 

treatments have not, to our knowledge, been tested before in the context of COVID-

19 treatment. These included podofilox, calcipotriol, vinblastine, etoposide, and 

carglumic acid identified from the data-driven approach, and paclitaxel identified from 

the hypothesis-driven approach. The shortest path analysis revealed molecular 

features that were close to the drugs (Supplementary Files 4 and 5). Considering the 

drugs generated from the data-driven approach, podofilox for example inhibits 

topoisomerase I by stabilizing the covalent complex formed between the enzyme and 

a broken DNA strand [117]. This prevents religation, causing DNA damage and 

eventually cell death [117]. Podofilox is known to down-regulate SOD2 expression in 

cancer cells and indirectly modulate SOD2 activity, impacting reactive oxygen species 

levels and influencing cell survival and death. The reactive oxygen species’ impact on 

COVID-19 progression [108-110] suggests that podofilox may have a potential role in 

COVID-19 treatment. Also, etoposide possesses an immunosuppressive effect. While 

suppressing certain immune cells, etoposide may also selectively eliminate abnormal 

or activated T cells involved in the inflammatory process [118]. This can be beneficial 

in some inflammatory conditions, potentially mitigating immune-mediated damage. 

Additionally, etoposide has the potential to influence the production of certain 

cytokines and signalling molecules involved in immune communication [119]. In the 

context of COVID-19, this could have both pro-inflammatory and anti-inflammatory 

effects. Vinblastine can modulate the production of certain cytokines, signalling 

molecules that orchestrate immune responses [120].  
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Furthermore, the analysis conducted indicated that ritonavir, an HIV protease inhibitor 

utilized in combination with nirmatrelvir in the potent COVID-19 treatment paxlovid, 

was assigned a lower ranking in our data-driven analysis. This may be attributed to 

the characteristics of the exploited knowledge graphs that contained limited 

information about the impacts of ritonavir on the transcriptomics, proteomics, 

lipidomics, and metabolomics of human cells. As a result, the topology of the networks 

that we used was biased in favour of ranking better-researched compounds like 

dexamethasone and tocilizumab. In our analysis, we did not identify nirmatrelvir 

among the ranked drug candidates either. This observation is partly attributed to the 

choice of seeds for the RWR analyses and also to the fact we focus here on the omics 

networks from the host because nirmatrelvir targets the viral genome, (polyprotein 

1ab), and could, therefore, not be captured by the network exploration. 

 

This analysis, drawing on diverse datasets, has provided valuable insights that 

contribute to ongoing efforts to combat endemic COVID-19 and the long-term health 

consequences of repeated SARS-CoV-2 infections. While some of the identified drugs 

have been implemented in disease management,  several promising candidates are 

yet to be investigated for COVID-19 disease treatment. The predictions provide a 

starting point for further experimental validation and clinical investigations. Ensuring 

the safety and efficacy of new COVID-19 drugs requires rigorous experimental and 

clinical testing and validation. In vitro analyses and clinical trials must be conducted to 

determine the cytotoxicity, optimal dosages, administration protocols, and potential 

interactions with other medications. These experiments would ultimately be needed to 

provide actual proof that many of the less well-studied drug repurposing candidates 

that we have identified could indeed be used to effectively treat COVID-19.  

Importantly, the algorithmic framework implemented in this study can be translated to 

other diseases to investigate relevant drug repurposing candidates and to explore the 

dynamics among drugs and multi-omics features in a multi-layered network.  

Limitations 

Considering the limitations of the DRKG and COVID-19 KG data, which predate large-

scale drug evaluations, incorporating more recent drug information is crucial for future 

studies.  While this study identified potential drugs for acute COVID-19 treatment, it 

https://go.drugbank.com/drugs/DB16691#BE0010016
https://go.drugbank.com/drugs/DB16691#BE0010016
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did not address Long COVID or the impact of comorbidities and disease severity. 

Thus, future investigations should explicitly explore treatment options for Long COVID 

Furthermore, our drug prediction analysis did not account for COVID-19 comorbidities 

and recommends further studies to refine drug prediction analysis specific for mild, 

moderate, or severe COVID-19-infected patients experiencing other infections. To 

maximize the potential of our approach, future work should incorporate drug synergy 

analysis. By systematically evaluating how the therapeutic activities of different drugs 

might combine, we can identify and prioritize the most promising combination 

therapies for further testing and development in the fight against COVID-19. 

Conclusion 

This chapter explored an integrative multi-layered network approach to identify drugs 

for repurposing against COVID-19 disease phases. We analysed multi-omics data 

(proteomics, transcriptomics, metabolomics, and lipidomics) and drug-related data 

(drug repurposing knowledge graph and COVID-19 knowledge graph) using RWR 

technique. Notably, we conducted RWR analyses in both hypothesis-driven and data-

driven manners, incorporating information specific to disease severity levels (mild, 

moderate, severe) via dedicated disease-state specific omics-graphs. Our multi-

layered network approach successfully identified potential drug candidates for 

repurposing against mild, moderate, and severe COVID-19. The incorporation of 

disease-state specific omics data significantly influenced the predicted drug 

candidates. Both immune-suppressive and pathway-targeting mechanisms emerged 

as potential approaches for COVID-19 treatment. To facilitate replication of our 

approach, we provide a containerized workflow with an expanded readme file at 

https://github.com/francis-agamah/Network-based-multi-omics-disease-drug-

associations_drugs-for-COVID-19-disease-phases. All other data and its 

supplementary information files generated during this study are included in the github 

repository. 

 

 

 

https://github.com/francis-agamah/Network-based-multi-omics-disease-drug-associations_drugs-for-COVID-19-disease-phases
https://github.com/francis-agamah/Network-based-multi-omics-disease-drug-associations_drugs-for-COVID-19-disease-phases
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Figure legends 

Figure 1. Diagram illustrating the workflow implemented in this study. The workflow 

begins with curating multi-omics data and drug data followed by a random walk with 

restart network analysis using both data-driven and hypothesis-driven approaches. 

Next, we prioritized and characterized candidate drugs followed by drug prediction 

robustness analysis. Finally, we concluded the analysis by validating the predicted 

drug candidates.  

 
 

https://www.chpc.ac.za/
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Figure 2. Graph representation of interactions between drugs and other features as 

observed from predicting candidate drugs using existing knowledge graphs and 

hypothesis-driven seeds. Blue edges represent interactions between drugs (green 

nodes). Cyan edges represent interactions between biological processes (pink nodes) 

and drugs. Red edges represent biological process-proteins (grey nodes) interactions 

and biological process-transcript (yellow nodes). Black edges represent drug-protein, 

drug-transcript, protein-transcript, and transcript-transcript interactions. The graphs 

were generated by defining filtering criteria based on node degree between 4 and 1633 

in cytoscape.  

 

 
 

 

Figure 3. (A) Graph representation of the interaction between drugs (green nodes), 

proteins (yellow nodes), transcripts (grey nodes), metabolites (red nodes), and 

biological process (pink nodes) as observed from predicting candidate drugs using 

existing knowledge graphs, mild disease-state specific omics-graphs, and hypothesis-

driven seeds. The graph reveals distinct subnetworks formed by hubs CCL2, CCL4, 

and NELFCD demonstrating extensive interactions with drug candidates, seed nodes 

(IL-6 and IL-6R), and other molecular features (B) Graph representation of the 

interaction between drugs (green nodes), proteins (yellow nodes), transcripts (grey 
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nodes), metabolites (red nodes), and biological process (pink nodes) as observed from 

predicting candidate drugs using existing knowledge graphs, moderate disease-state 

specific omics-graphs, and hypothesis-driven seeds. The graph reveals distinct 

subnetworks formed by hubs NFKB1, IL-10, and NELFCD demonstrating extensive 

interactions with drug candidates, seed nodes (IL-6 and IL-6R), and other molecular 

features (C) Graph representation of the interaction between drugs (green nodes), 

proteins (yellow nodes), transcripts (grey nodes), metabolites (red nodes), and 

biological process (pink nodes)  as observed from predicting candidate drugs using 

existing knowledge graphs, severe disease-state specific omics-graphs, and 

hypothesis-driven seeds. The graph reveals distinct subnetworks formed by hubs 

CXCL1, CCL4, and JAK2 demonstrating extensive interactions with drug candidates, 

seed nodes (IL-6 and IL-6R), and other molecular features. Yellow edges represent 

drug-protein and drug-transcript pairwise interactions. Red edges represent biological 

process-protein interactions and biological process-transcripts interactions. Green 

edges represent protein-protein interactions. Black edges represent transcript-

transcript interactions and protein-transcript interactions. Blue edges represent drug-

drug interactions. Light blue edges represent biological processes-biological process 

interactions and biological process-pathway interactions. The graphs were generated 

by defining filtering criteria based on node degree between 4 and 1633 in cytoscape. 
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Figure 4. (A) Graph representation of the interaction between drugs (green nodes), 

proteins (yellow nodes), transcripts (grey nodes), metabolites (red nodes), lipids (blue 

nodes), and biological processes and pathways (pink nodes) as observed from 

predicting candidate drugs using existing knowledge graphs, mild disease-state 

specific omics-graphs, and data-driven seeds. The graph reveals distinct subnetworks 

formed by hub CCL4,  demonstrating extensive interactions with drug candidates and 

other molecular features including seed nodes (STAT1 and SOD2) (B) Graph 

representation of the interaction between drugs (green nodes), proteins (yellow 

nodes), transcripts (grey nodes), metabolites (red nodes), lipids (blue nodes), and 

biological processes and pathways (pink nodes) as observed from predicting 

candidate drugs using existing knowledge graphs, moderate disease-state specific 

omics-graphs, and data-driven seeds. The graph reveals distinct subnetworks formed 

by hub HGF,  demonstrating extensive interactions with drug candidates and other 

molecular features including seed nodes (STAT1 and SOD2), as well as a subnetwork 

formed among lipids. (C) Graph representation of the interaction between drugs (green 

nodes), proteins (yellow nodes), transcripts (grey nodes), metabolites (red nodes), 

lipids (blue nodes), and biological processes and pathways (pink nodes) as observed 

from predicting candidate drugs using existing knowledge graphs, severe disease-
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state specific omics-graphs, and data-driven seeds. The graph reveals distinct 

subnetworks formed by hub HGF,  demonstrating extensive interactions with drug 

candidates and other molecular features including seed nodes (STAT1 and SOD2), 

as well as a subnetwork formed among lipids. Yellow edges represent drug-protein 

and drug-transcript pairwise interactions. Red edges represent biological process-

protein interactions and biological process-transcripts interactions. Pink edges 

represent pairwise interactions between lipids. Green edges represent protein-protein 

interactions. Black edges represent transcript-transcript interactions and protein-

transcript interactions. Dark blue edges represent drug-drug interactions. Light blue 

edges represent biological processes-biological process interactions and biological 

process-pathway interactions. The graphs were generated by defining filtering criteria 

based on node degree between 4 and 1633 in cytoscape. 

 

 

 



 34 

Table legends 

 

Table 1. Description of the node-types in drug repurposing knowledge graph 

Node-type Number of features 
Anatomy  400 

Anatomical Therapeutic Chemical (Atc)  4048 

Biological Process  11381 

Cellular Component  1391 

Compound  24313 

Disease  5103 

Gene  39220 

Molecular Function  2884 
Pathway  1822 

Pharmacologic Class  345 

Side Effect  5701 

Symptom  415 

Taxonomy (Tax)  215 

 
 
Table 2. Description of the node-types in COVID-19 Knowledge Graph 

Node-type Number of features 
SARS-CoV-2 baits 23 

Host genes and drug targets 10959 
Pathways 274 

Drugs (chemical/compound) 4266 

Biological process (Phenotypes) 1893 
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Table 3. Top 20 potential COVID-19 drugs, ranked according to their measure of 

proximity to IL-6 and IL-6R seed nodes as determined through RWR analysis of DRKG 

and COVID-19 KG. The references point to publications that have reported the drugs’ 

mechanism of action potentially linked with COVID-19.  

 
Drug name Drug Category Mechanism of action potentially 

linked with COVID-19 
Measure of 
proximity 

Reference* 

Tocilizumab Interleukin-6 (IL-6) 
receptor antagonist 

Suppresses immune response by 
blocking IL-6 signalling 

0.0353861 [121] 

Zinc 
  

Essential mineral / 
Nutrient  

Interferes with viral RNA synthesis to 
inhibit replication  

0.0007941 [122] 

Sirolimus Immunosuppressive 
drug 

Expresses immunomodulatory and anti-
inflammatory properties and inhibits the 
expression of proinflammatory 
cytokines. 

0.0003784 [123, 124] 

Choline Essential nutrient  Supports cell membrane integrity and 
neurotransmitter function 

0.0003440 [125] 

Ivermectin  Antiparasitic drug Inhibits viral replication and modulate 
the host immune response 

0.0003056 [126] 

Dactinomycin  Anticancer  Expresses immune modulatory 
properties and inhibits viral cellular 
transcription 

0.0002734 [80, 81] 

Losartan  Angiotensin receptor 
blocker 

Reduce the activity of the renin-
angiotensin system 

0.0002327 [127] 

Ribavirin Antiviral  Interferes with viral RNA synthesis and 
replication 

0.0002168 [128, 129] 

Azithromycin  Antibiotic  Expresses anti-viral and anti-
inflammatory properties 

0.0002000 [130] 

Tenofovir Antiviral  Interferes with viral RNA synthesis to 
inhibit replication 

0.0001930 [131] 

Acetaminophen Analgesic  Expresses antipyretic and analgesic 
effects and inhibit the cyclooxygenase 
(COX) pathways. 

0.0001665 [132, 133] 

Dexamethasone Corticosteroid  Suppresses immune response 0.0001633 [99] 
Methotrexate  Immunosuppressive 

drug 
Suppresses immune response 0.0001624  

Cyclosporine  Immunosuppressive 
drug 

Express anti-inflammatory and anti-viral 
properties 

0.0001614 [134, 135] 

Cisplatin Anticancer  0.0001555  
Tacrolimus  Immunosuppressive 

drug 
Mitigate the hyperinflammatory 
response 

0.0001532 [136] 

Indomethacin Non-steroidal anti-
inflammatory drug 

Expresses anti-inflammatory properties 
and reduces pain and fever 

0.0001505 [64, 137] 

Cannabidiol Cannabinoid  Inhibits viral replication by up-regulating 
the host inositol-requiring enzyme-1α 
ribonuclease endoplasmic reticulum 
stress response and interferon signalling 
pathways 

0.0001488 [61] 

Doxorubicin Anticancer  Expresses antiviral and 
immunomodulatory properties. 

0.0001486 [62] 

Diclofenac Non-steroidal anti-
inflammatory drug 

Expresses anti-inflammatory properties 
and reduces pain and fever 

0.0001481 [137] 
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Table 4. Top 20 potential drugs for mild, moderate, and severe COVID-19, ranked 

according to their measure of proximity to IL-6 and IL-6R seed nodes as determined 

through RWR analysis of COVID-KG, DRKG, and DSOG. The references point to 

publications that have reported the drugs' mechanism of action potentially linked with 

COVID-19. 

Drug Drug category Mechanism of action 
potentially linked with 
COVID-19 

Measure of 
proximity in 
mild 

Measure of 
proximity 
in 
moderate 

Measure of 
proximity 
in severe  

Refere
nce* 

Dexamethasone Corticosteroid Suppresses immune 
response 

0.0033655 0.0033691 0.0033697 [99] 

Sarilumab Anti-interleukin 6 
(IL-6) receptor 
monoclonal 
antibody 

Suppresses immune 
response by blocking IL-6 
signalling 

0.0031924 0.0031908 0.0031911 [138] 

Tocilizumab Anti-interleukin 6 
(IL-6) 
receptor monoclonal 
antibody 

Suppresses immune 
response by blocking IL-6 
signalling 

0.0031908 0.0031894 0.0031897 [121] 

Zinc Essential mineral / 
Nutrient  

Expresses antiviral 
properties and interferes 
with viral RNA synthesis to 
inhibit replication  

0.0002730 0.0002681 0.0002692 [122, 
139] 

Sirolimus Immunosuppressive 
drug 

Expresses 
immunomodulatory and 
anti-inflammatory 
properties and inhibits the 
expression of 
proinflammatory cytokines. 

0.0001524 0.0001526 0.0001530 [123, 
124] 

Histamine  Depressor amine Expresses 
immunomodulatory and 
anti-inflammatory 
properties 

0.0001420 0.0001413 0.0001416 [140, 
141] 

Curcumin  Natural compound Expresses immune 
modulatory and anti-
inflammatory properties 
that inhibit severe 
inflammation and cytokine 
storm. 

0.0001366 0.0001358 0.0001363 [142, 
143] 

Cyclosporine Immunosuppressive 
drug 

Express anti-inflammatory 
and anti-viral properties 

0.0001352 0.0001370 0.0001369 [134, 
135] 

Doxorubicin Anticancer  inhibit the protease-
mediated viral entry to the 
host cell 

0.0001314 0.0001316 0.0001318 [62] 

Morphine Opioid pain 
medication 

Contribute to improving 
respiratory failure 

0.0001301 0.0001281 0.0001284 [144] 

Dactinomycin Anticancer Expresses immune 
modulatory properties and 
inhibits viral cellular 
transcription 

0.0001292 0.0001290 0.0001288 [80, 
81] 

Simvastatin lipid-lowering drug Expresses anti-
inflammatory, 
immunomodulatory 
properties and reduce viral 
replication 

0.0001290 0.0001289 0.0001287 [145, 
146] 
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Hydrocortisone Corticosteroid Expresses anti-
inflammatory and 
immunomodulatory 
properties 

0.0001274 0.0001279 0.0001276 [99] 

Vitamin C Essential mineral / 
Nutrient 

Express antioxidant 
properties and improves 
immune function 

0.0001268 0.0001269 0.0001276 [106] 

Mycophenolic 
acid 

Immunosuppressive 
drug 

Expresses 
immunomodulatory 
properties 

0.0001236 0.0001236 0.0001239 [100] 

Methotrexate Immunosuppressive 
drug 

Expresses 
immunomodulatory 
properties 

0.0001182 0.0001195 0.0001194  

Dopamine Catecholamine 
neurotransmitter 

Influences the expression 
of ACE2 

0.0001178 0.0001187 0.0001197 [147] 

Indomethacin Non-steroidal anti-
inflammatory drug 

Expresses anti-
inflammatory properties 
and reduces pain and fever 

0.0001170 0.0001165 0.0001162 [64] 

Paclitaxel Anticancer Express anti-inflammatory 
and anti-viral properties 

0.0001159 0.0001159 0.0001161  

Metformin Biguanide 
antihyperglycemic 

Inhibits viral replication  0.0001158 0.0001158 0.0001164 [148] 

 
 
Table 5. Node degree, betweenness, and closeness centrality measures for the drug 

repurposing candidates predicted using the hypothesis-driven approach. 

Drug name Degree  
mild 

Degree  
moderate 

Degree  
severe 

Betweenness  
mild 

Betweenness  
moderate 

Betweenness  
severe 

Closeness   
mild 

Closeness  
moderate 

Closeness  
severe 

Dexamethasone 1633 1632 1633 0.6282 0.5881 0.6293 0.6355 0.6233 0.6228 

Tocilizumab 830 829 830 0.11436 0.1008 0.1103 0.4643 0.4482 0.4571 

Sarilumab 469 469 469 0.0286 0.0246 0.0283 0.4432 0.4289 0.4373 

Sirolimus 7 8 6 0.0063 0.0068 0.0054 0.4831 0.4889 0.4512 

Vitamin C 6 6 4 0.0047 0.0034 0.0004 0.4860 0.4525 0.4460 

Cyclosporine 5 6 4 0.0007  0.0014 0.0004 0.4769 0.4832 0.4460 

Dactinomycin 5 4 4 0.0007 0.0003 0.0004 0.4769 0.4367 0.4460 

Paclitaxel 5 5 4 0.0007 0.0009 0.0004 0.4769 0.4739 0.4460 

Simvastatin 5 5 4 0.0007 0.0009 0.0004 0.4769 0.4739 0.4460 

Hydrocortisone 4 5 4 0.0004 0.0007 0.0004. 0.4528 0.4454 0.4460 

Zinc 4 5 4 0.0005  0.0011 0.0005. 0.3652 0.3903 0.3637 

Indomethacin 4 5 4 0.0004  0.0009 0.0004 0.4528 0.4739 0.4460 

Mycophenolic 
acid 

4 5 4 0.0004 0.0009 0.0004 0.4528 0.4739 0.4460 

Doxorubicin 4 5 4 0.0004 0.0009 0.0004 0.4528 0.4739 0.4460 

Methotrexate 4 5 4 0.0004 0.0007 0.0004 0.4528 0.4454 0.4460 

Morphine 4 4 3 0.0005 0.0007 0.0003 0.4768 0.4738 0.4459 

Curcumin 3 4 3 0.0 0.0001 0.0004 0.4644 0.4716 0.4483 

Metformin 3 3 2 0.0 0.0 0.0 0.4644 0.4355 0.4354 

Histamine 3 3 1 0.0002 0.0 0.0 0.3866 0.3705 0.3601 

Dopamine 1 1 1 0.0 0.0 0.0 0.3615 0.3584 0.3601 
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Table 6. Top 20 potential drugs for mild, moderate, and severe COVID-19, ranked 

according to their measure of proximity to STAT1, SOD2, 3-hydroxyoctanoate, and 

unknown_mz_815.61548_+_RT_27.063 seed nodes as determined through RWR 

analysis of COVID-KG, DRKG, and DSOG. The references point to publications that 

have reported the drugs' mechanism of action potentially linked with COVID-19. 

 
Drug Drug category Mechanism of action 

potentially linked with 
COVID-19 

Measure of 
proximity 
in mild 

Measure of 
proximity 
in 
moderate 

Measure of 
proximity 
in severe 

Refere
nce* 

Glutathione Antioxidant Protect cells from damage 
caused by oxidative stress 

0.0007061 0.0007044 0.0007044 [105, 
106] 

Crizotinib Tyrosine kinase 
inhibitor 

Express immune modulatory 
properties and could inhibit 
receptor tyrosine kinases and 
affect cellular processes 
relevant to viral replication 

0.0007022 0.0007005 0.0007002 [112] 

Curcumin Natural compound Expresses antiviral properties, 
immune modulatory and 
antioxidant properties that may 
contribute to inhibit 
inflammation, oxidative stress, 
and reduce lung injury  

0.0006966 0.0006948 0.0006951 [142] 

Vorinostat Histone 
deacetylase 
inhibitor 

Express anti-inflammatory and 
antiviral properties 

0.0006943 0.0006952 0.0006954 [113] 

Vinblastine Anticancer  Disrupt microtubule dynamics, 
leading to mitotic spindle 
dysfunction and cell cycle 
arrest. 

0.0006920 0.0007029 0.0007022 [149] 

Iron Essential mineral / 
Nutrient 

Expresses anti-inflammatory 
and immunomodulatory 
properties 

0.0006917 0.0006899 0.0006944 [150] 

Mebendazole Antihelminthic Express antiviral and immune 
modulatory properties and 
may interfere viral replication 

0.0006913 0.0006913 0.0006910 [102] 

Podofilox Topical agent Stimulate the production of 
interferon-γ, a cytokine that 
plays a role in the immune 
response. 

0.0006900 0.0007003 0.0007002 [151] 

Valine Essential amino 
acid 

Protein synthesis 0.0006893 0.0006891 0.0006891 [152, 
153] 

Acetylcysteine Antioxidant and 
glutathione inducer 

Express antioxidant, 
immunomodulatory, and 
mucolytic properties 

0.0006878 0.0006877 0.0006878 [154] 

Thimerosal  Methyltransferase 
inhibitor 

Induces Th2-type cytokines via 
influencing cytokine secretion 
by human dendritic cells 

0.0006826 0.0006824 0.0006824  
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Fludarabine Chemotherapy drug Inhibits type I interferon-
induced expression of ACE2 

0.0006813 0.0006811 0.0006812 [93] 

Calcipotriol Anti-psoriatic  Enhance cell differentiation 
 

0.0006800 0.0006800 0.0006800  

Teniposide  Cytotoxic drug Inhibits SARS-CoV-2 3-
chymotrypsin-like cysteine 
protease 

0.0001087 0.0001091 0.0001096 [155] 

Omacetaxine Cephalotaxine 
ester and protein 
synthesis inhibitor 

Inhibits protein translation and 
interfere with viral replication 

0.0001015 0.0000955 0.0001009 [156] 

Etoposide topoisomerase II 
inhibitor 

Express anti-inflammatory 
properties and suppresses 
cytokine production 

0.0001010 0.0000973 0.0001022 [157, 
158] 

L-Glutamine Amino acid Expresses immune 
modulatory, anti-inflammatory 
and antioxidant properties 

0.0000945 0.0000943 0.0000942 [159, 
160] 

Carglumic acid Analog of N-
acetylglutamate 
(NAG) 

Express enzyme properties for 
processing excess nitrogen 
produced when the body 
metablizes proteins 

0.0000942 0.0000939 0.0000939  

Pregabalin  Anticonvulsant drug Reduces COVID-19-related 
pain and cough 

0.0000591 0.0000591 0.0000591 [161] 

Threonine Essential amino 
acid 

Expresses immune 
modulatory, anti-inflammatory 
and antioxidant properties 

0.0000579 0.0000578 0.0000579 [153] 
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Table 7. Node degree, betweenness, and closeness centrality measures for the drug 

repurposing candidates predicted using the data-driven approach. 

 

Drug name 
Degree  
mild 

Degree  
moderate 

Degree  
severe 

Betweenness  
mild 

Betweenness  
moderate 

Betweenness  
severe 

Closeness   
mild 

Closeness  
moderate 

Closeness  
severe 

Crizotinib 1919 1947 2 0.5147 0.4171 0.0025 0.5478 0.5297 0.3987 

Curcumin 1076 4 2 0.3281 0.0005 0.0 0.5389 0.4317 0.3983 

Glutathione 212 234 118 0.0397 0.0350 0.0439 0.3532 0.3611 0.3657 

Vinblastine 4 1905 1378 0.0009 0.4787 0.6440 0.4364 0.5639 0.5556 

Acetylcysteine 2 2 1 0.0 0.0 0.0 0.3106 0.3028 0.2743 

Calcipotriol 2 2 1 0.0 0.0 0.0 0.3178 0.3186 0.3370 

Etoposide 2 2 2 0.0 0.0 0.0001 0.3987 0.3993 0.3715 

Fludarabine 2 3 2 0.0 0.0 0.0 0.3178 0.3902 0.3983 

Iron 2 2 1 0.0 0.0 0.0 0.3106 0.3028 0.2743 

Mebendazole 2 2 1 0.0 0.0 0.0 0.3178 0.3186 0.3370 

Omacetaxine 2 2 1 0.0 0.0 0.0 0.2438 0.2466 0.2460 

Podofilox 2 2 478 0.0 0.0 0.1438 0.3178 0.31863 0.4092 

Teniposide 2 2 2 0.0 0.0 0.0001 0.3987 0.3993 0.3715 

Thimerosal 2 2 1 0.0 0.0 0.0 0.3106 0.3028 0.2743 

Valine 2 2 1 0.0 0.0 0.0 0.3106 0.3028 0.2743 

Vorinostat 2 4 2 0.0009 0.0005 0.0 0.4199 0.4317 0.3983 

Carglumic acid 1 1 1 0.0 0.0 0.0 0.2610 0.2653 0.2678 

L-Glutamine 1 1 1 0.0 0.0 0.0 0.2610 0.2653 0.2678 

Threonine 1 2 1 0.0 0.0 0.0 0.3106 0.3028 0.2743 

Pregabalin 1 1 
                           
1 0.0 0.0 0.0 0.3539 0.3463 0.3463 
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Supplementary Table 1. Description of the edge-types in Drug Repurposing 
Knowledge Graph 

Source Predicate  Subject  Object Number 
of edges 

bioarx DrugHumGen Compound Gene  24501 
bioarx DrugVirGen Compound Gene  1165 
bioarx Coronavirus_ass_host_gene Disease Gene  129 
bioarx Covid2_acc_host_gene Disease Gene  332 
bioarx HumGenHumGen Gene Gene  58094 
bioarx VirGenHumGen Gene Gene  535 
DGIDB ACTIVATOR Gene Compound  316 
DGIDB AGONIST Gene Compound  3012 
DGIDB ALLOSTERIC MODULATOR Gene Compound  317 
DGIDB ANTAGONIST Gene Compound  3006 
DGIDB ANTIBODY Gene Compound  188 
DGIDB BINDER Gene Compound  143 
DGIDB BLOCKER Gene Compound  979 
DGIDB CHANNEL BLOCKER Gene Compound  352 
DGIDB INHIBITOR Gene Compound  5971 
DGIDB MODULATOR Gene Compound  243 
DGIDB OTHER Gene Compound  11070 
DGIDB PARTIAL AGONIST Gene Compound  75 
DGIDB POSITIVE ALLOSTERIC MODULATOR Gene Compound  618 
DRUGBANK carrier Compound Gene  720 
DRUGBANK ddi-interactor-in Compound Compound  1379271 
DRUGBANK enzyme Compound Gene  4923 
DRUGBANK target Compound Gene  19158 
DRUGBANK treats Compound Disease  4968 
DRUGBANK x-atc Compound Atc  15750 
GNBR A+ Compound Gene  1568 
GNBR A- Compound Gene  1108 
GNBR B Compound Gene  7170 
GNBR C Compound Disease  1739 
GNBR E+ Compound Gene  1970 
GNBR E- Compound Gene  2918 
GNBR E Compound Gene  32743 
GNBR J Compound Disease  1020 
GNBR K Compound Gene  12411 
GNBR Mp Compound Disease  495 
GNBR N Compound Gene  12521 
GNBR O Compound Gene  5573 
GNBR Pa Compound Disease  2619 
GNBR Pr Compound Disease  966 
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GNBR Sa Compound Disease  16923 
GNBR T Compound Disease  54020 
GNBR Z Compound Gene  2821 
GNBR B Gene Gene  8164 
GNBR D Gene Disease  500 
GNBR E+ Gene Gene  10838 
GNBR E Gene Gene  418 
GNBR G Gene Disease  2055 
GNBR H Gene Gene  2509 
GNBR I Gene Gene  5434 
GNBR J Gene Disease  30234 
GNBR L Gene Disease  48384 
GNBR Md Gene Disease  1279 
GNBR Q Gene Gene  19372 
GNBR Rg Gene Gene  11018 
GNBR Te Gene Disease  2836 
GNBR U Gene Disease  6432 
GNBR Ud Gene Disease  407 
GNBR V+ Gene Gene  8689 
GNBR W Gene Gene  280 
GNBR X Gene Disease  1324 
GNBR Y Gene Disease  1948 
GNBR in_tax Gene Tax  14663 
Hetionet AdG Anatomy Gene  102240 
Hetionet AeG Anatomy Gene  526407 
Hetionet AuG Anatomy Gene  97848 
Hetionet CbG Compound Gene  11571 
Hetionet CcSE Compound Side Effect  138944 
Hetionet CdG Compound Gene  21102 
Hetionet CpD Compound Disease  390 
Hetionet CrC Compound Compound  6486 
Hetionet CtD Compound Disease  755 
Hetionet CuG Compound Gene  18756 
Hetionet DaG Disease Gene  12623 
Hetionet DdG Disease Gene  7623 
Hetionet DlA Disease Anatomy  3602 
Hetionet DpS Disease Symptom  3357 
Hetionet DrD Disease Disease  543 
Hetionet DuG Disease Gene  7731 
Hetionet GcG Gene Gene  61690 
Hetionet GiG Gene Gene  147164 
Hetionet GpBP Gene Biological 

Process  
559504 
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Hetionet GpCC Gene Cellular 
Component  

73566 

Hetionet GpMF Gene Molecular 
Function  

97222 

Hetionet GpPW Gene Pathway  84372 
Hetionet Gr>G Gene Gene  265672 
Hetionet PCiC Pharmacologic 

Class 
Compound  1029 

INTACT ASSOCIATION Compound Gene  1447 
INTACT DIRECT INTERACTION Compound Gene  155 
INTACT PHYSICAL ASSOCIATION Compound Gene  203 
INTACT ADP RIBOSYLATION REACTION Gene Gene  58 
INTACT ASSOCIATION Gene Gene  112390 
INTACT CLEAVAGE REACTION Gene Gene  93 
INTACT COLOCALIZATION Gene Gene  3468 
INTACT DEPHOSPHORYLATION REACTION Gene Gene  303 
INTACT DIRECT INTERACTION Gene Gene  6950 
INTACT PHOSPHORYLATION REACTION Gene Gene  1328 
INTACT PHYSICAL ASSOCIATION Gene Gene  129318 
INTACT PROTEIN CLEAVAGE Gene Gene  67 
INTACT UBIQUITINATION REACTION Gene Gene  371 
STRING ACTIVATION Gene Gene  81355 
STRING BINDING Gene Gene  315875 
STRING CATALYSIS Gene Gene  343533 
STRING EXPRESSION Gene Gene  757 
STRING INHIBITION Gene Gene  28959 
STRING OTHER Gene Gene  310690 
STRING PTMOD Gene Gene  15113 
STRING REACTION Gene Gene  400426 

 
 
 
 
Supplementary Table 2. Description of the edge-types in COVID-19 Knowledge 
Graph 

Edge-type Number of 
interactions 

COVID-19 genes interaction with chemicals 28634 
Phenotypes (disease gene-associated biological processes) interactions with COVID-19 drugs 
(chemical/compound) 

1571 

Phenotypes (disease gene-associated biological processes) interactions with COVID-19 genes 1610 
SARS-CoV-2 baits interaction with host genes 1114 
Pathways interaction with COVID-19 genes 692 

 
 
 



 44 

Supplementary Table 3.Selected data-driven seeds for random walk network 
exploration 

Approach Seed node Integrated 
centrality score 

Feature type 

Data-driven STAT1 53529.0403 Transcript 
SOD2 2215.5746 Protein  
3-hydroxyoctanoate 1506.9998 Metabolite 
Unknown_mz_815.61548_+_RT_27.063 9936.9781 Lipid  
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