

THE 3RD INTERNATIONAL CONFERENCE ON SYSTEMS MEDICINE, AI & DRUG REPURPOSING

SCANET for single-cell network-based drug repurposing candidate extraction

Mhaned Oubounyt¹, Lorenz Adlung², Fabio Patroni^{1,3}, Nina Kerstin Wenke¹, Andreas Maier¹, Michael Hartung¹, Jan Baumbach ^{1,4}, Maria L. Elkjaer ^{1,5,6,7}

¹Institute for Computational Systems Biology, University of Hamburg, Hamburg 22607, Germany

²Department of Medicine, Hamburg Center for Translational Immunology (HCTI) and Center for Biomedical AI (bAlome),

University Medical Center Hamburg-Eppendorf (UKE), Hamburg 20246, Germany

³Center for Molecular Biology and Genetic Engineering (CBMEG), State University of Campinas (Unicamp), Campinas, SP 13083-875, Brazil

⁴Department of Mathematics and Computer Science, University of Southern Denmark, Odense 5000, Denmark

⁵Department of Neurology, Odense University Hospital, Odense 5000, Denmark

⁶Institute of Clinical Research, University of Southern Denmark, Odense 5000, Denmark

⁷Institute of Molecular Medicine, University of Southern Denmark, Odense 5000, Denmark

Abstract

Reconstructing small regulatory networks is essential for understanding cellular functions and mechanisms. Performing this task with single-cell RNA sequencing data poses a substantial computational challenge.

In response, we present SCANet (single-cell co-expression network analysis) [1], a comprehensive tool designed for single-cell profiling. SCANet encompasses the entire workflow of differential mechanotyping, from identifying trait/cell-type-specific gene co-expression modules to predicting mechanistic drug repurposing candidates [2]. To showcase SCANet's efficacy, we examined two distinct datasets. Firstly, we uncovered monocytic drivers associated with cytokine storms in patients with acute respiratory illness, elucidating potential targets for intervention. Secondly, in obese mice, we identified 20 drugs targeting 8 potential pharmacological targets within metabolic driver mechanisms in intestinal stem cells. In another study [3], SCANet efficiently deciphers cell- and disease-specific co-expression gene modules across lesion types in patients with multiple sclerosis.

SCANet is available as a free, open-source Python package, facilitating its integration into single-cell-based systems medicine research and mechanistic drug discovery.

Keywords

Single-cell RNA, Regulatory networks, Mechanistic drug repurposing

References

- 1 Oubounyt M, Adlung L, Patroni F, Wenke NK, Maier A, Hartung M, Baumbach J, Elkjaer ML. Inference of differential key regulatory networks and mechanistic drug repurposing candidates from scRNA-seq data with SCANet. Bioinformatics. 2023.
- 2 Maier, A., Hartung, M., Abovsky, M., Adamowicz, K., Baider, G., Baier, S., ... Baumbach, J. Drugst.One A plug-and-play solution for online systems medicine and network-based drug repurposing. *Nucleic Acids Research*, 2024.

THE 3RD INTERNATIONAL CONFERENCE ON SYSTEMS MEDICINE, AI & DRUG REPURPOSING

3 Elkjaer ML, Hartebrodt A, Oubounyt M, Weber A, Vitved L, Reynolds R, Thomassen M, Rottger R, Baumbach J, Illes Z. Single-Cell Multi-Omics Map of Cell Type–Specific Mechanistic Drivers of Multiple Sclerosis Lesions. Neurology: Neuroimmunology & Neuroinflammation. 2024.

