54
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Impact of graphitic carbon nitrides synthesized from different precursors on Schottky junction characteristics

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Graphitic carbon nitride (g-CN) has gained wide interest in many areas, such as energy and the environmental remediation as a layered polymeric semiconductor that allows the formation of catalytically active Schottky junctions due to its proper electronic band structure. Interestingly, although it is known that the precursors used in the synthesis, can influence the properties of the g-CN, no detailed study on these effects on Schottky junctions could be found in the literature. In this research, the effects of g-CNs synthesized by thermal polycondensation of different precursors on the photocatalytic efficiency of Schottky junctions were investigated. For this purpose, urea, thiourea, melamine, and guanidine hydrochloride were used as different precursors, while the photocatalytic dehydrogenation of formic acid was used as a test reaction. The Schottky junctions were formed by decorating the as-prepared g-CNs with AgPd alloy nanoparticles (NP), which were synthesized by reduction of Ag and Pd salts with NaBH 4. The structural, electronic and charge carrier dynamics of all prepared structures have been fully characterized by TEM, XRD, BET, XPS, UV-Vis DRS, PL, and PL life measurements. The results showed that the charge transfer dynamics of g-CNs surface defects are more effective in the photocatalytic performance of Schottky junctions than in structural features such as the size of the metal NPs or the surface area of the catalysts.

          Related collections

          Most cited references45

          • Record: found
          • Abstract: found
          • Article: not found

          A metal-free polymeric photocatalyst for hydrogen production from water under visible light.

          The production of hydrogen from water using a catalyst and solar energy is an ideal future energy source, independent of fossil reserves. For an economical use of water and solar energy, catalysts that are sufficiently efficient, stable, inexpensive and capable of harvesting light are required. Here, we show that an abundant material, polymeric carbon nitride, can produce hydrogen from water under visible-light irradiation in the presence of a sacrificial donor. Contrary to other conducting polymer semiconductors, carbon nitride is chemically and thermally stable and does not rely on complicated device manufacturing. The results represent an important first step towards photosynthesis in general where artificial conjugated polymer semiconductors can be used as energy transducers.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Graphitic Carbon Nitride (g-C3N4)-Based Photocatalysts for Artificial Photosynthesis and Environmental Remediation: Are We a Step Closer To Achieving Sustainability?

            As a fascinating conjugated polymer, graphitic carbon nitride (g-C3N4) has become a new research hotspot and drawn broad interdisciplinary attention as a metal-free and visible-light-responsive photocatalyst in the arena of solar energy conversion and environmental remediation. This is due to its appealing electronic band structure, high physicochemical stability, and "earth-abundant" nature. This critical review summarizes a panorama of the latest progress related to the design and construction of pristine g-C3N4 and g-C3N4-based nanocomposites, including (1) nanoarchitecture design of bare g-C3N4, such as hard and soft templating approaches, supramolecular preorganization assembly, exfoliation, and template-free synthesis routes, (2) functionalization of g-C3N4 at an atomic level (elemental doping) and molecular level (copolymerization), and (3) modification of g-C3N4 with well-matched energy levels of another semiconductor or a metal as a cocatalyst to form heterojunction nanostructures. The construction and characteristics of each classification of the heterojunction system will be critically reviewed, namely metal-g-C3N4, semiconductor-g-C3N4, isotype g-C3N4/g-C3N4, graphitic carbon-g-C3N4, conducting polymer-g-C3N4, sensitizer-g-C3N4, and multicomponent heterojunctions. The band structures, electronic properties, optical absorption, and interfacial charge transfer of g-C3N4-based heterostructured nanohybrids will also be theoretically discussed based on the first-principles density functional theory (DFT) calculations to provide insightful outlooks on the charge carrier dynamics. Apart from that, the advancement of the versatile photoredox applications toward artificial photosynthesis (water splitting and photofixation of CO2), environmental decontamination, and bacteria disinfection will be presented in detail. Last but not least, this comprehensive review will conclude with a summary and some invigorating perspectives on the challenges and future directions at the forefront of this research platform. It is anticipated that this review can stimulate a new research doorway to facilitate the next generation of g-C3N4-based photocatalysts with ameliorated performances by harnessing the outstanding structural, electronic, and optical properties for the development of a sustainable future without environmental detriment.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Graphitic carbon nitride materials: variation of structure and morphology and their use as metal-free catalysts

                Bookmark

                Author and article information

                Journal
                Turk J Chem
                Turk J Chem
                Turkish Journal of Chemistry
                The Scientific and Technological Research Council of Turkey
                1300-0527
                1303-6130
                2021
                27 August 2021
                : 45
                : 4
                : 1057-1069
                Affiliations
                [1 ] Department of Chemistry, Vocational School of Technical Sciences, Mersin University, Mersin Turkey
                [2 ] Department of Nano Technology and Advanced Materials, Institute of Science, Mersin University, Mersin Turkey
                Author notes
                * To whom correspondence should be addressed. E-mail: orhanaltan@ 123456mersin.edu.tr

                CONFLICT OF INTEREST:

                none declared

                Article
                10.3906/kim-2012-45
                8517616
                fabb504c-54da-4995-98ad-eaea1d353fee
                Copyright © 2021 The Author(s)

                This article is distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/4.0/ ), which permits unrestricted use and redistribution provided that the original author and source are credited.

                History
                : 19 December 2020
                : 02 April 2021
                Categories
                Article

                graphitic carbon nitride,palladium nanoparticles,alloy nanoparticles photocatalyst,formic acid,dehydrogenation

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content296

                Cited by4

                Most referenced authors645