10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      EntailE: Introducing Textual Entailment in Commonsense Knowledge Graph Completion

      Preprint

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Commonsense knowledge graph completion is a new challenge for commonsense knowledge graph construction and application. In contrast to factual knowledge graphs such as Freebase and YAGO, commonsense knowledge graphs (CSKGs; e.g., ConceptNet) utilize free-form text to represent named entities, short phrases, and events as their nodes. Such a loose structure results in large and sparse CSKGs, which makes the semantic understanding of these nodes more critical for learning rich commonsense knowledge graph embedding. While current methods leverage semantic similarities to increase the graph density, the semantic plausibility of the nodes and their relations are under-explored. Previous works adopt conceptual abstraction to improve the consistency of modeling (event) plausibility, but they are not scalable enough and still suffer from data sparsity. In this paper, we propose to adopt textual entailment to find implicit entailment relations between CSKG nodes, to effectively densify the subgraph connecting nodes within the same conceptual class, which indicates a similar level of plausibility. Each node in CSKG finds its top entailed nodes using a finetuned transformer over natural language inference (NLI) tasks, which sufficiently capture textual entailment signals. The entailment relation between these nodes are further utilized to: 1) build new connections between source triplets and entailed nodes to densify the sparse CSKGs; 2) enrich the generalization ability of node representations by comparing the node embeddings with a contrastive loss. Experiments on two standard CSKGs demonstrate that our proposed framework EntailE can improve the performance of CSKG completion tasks under both transductive and inductive settings.

          Related collections

          Author and article information

          Journal
          14 February 2024
          Article
          2402.09666
          f9fdf744-6863-48ae-97e3-2aa14f0b9d77

          http://creativecommons.org/licenses/by-nc-nd/4.0/

          History
          Custom metadata
          10 pages, 5 figures, 9 tables
          cs.CL

          Theoretical computer science
          Theoretical computer science

          Comments

          Comment on this article