32
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Molecular tools for identification of shark species involved in depredation incidents in Western Australian fisheries

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Shark depredation is an issue of concern in some Western Australian recreational and commercial fisheries where it can have economic, social and ecological consequences. Knowledge of the shark species involved is fundamental to developing effective management strategies to mitigate the impacts of depredation. Identification of the species responsible is difficult as direct observation of depredation events is uncommon and evaluating bite marks on fish has a high degree of uncertainty. The use of trace DNA techniques has provided an alternative method for species identification. We demonstrate proof of concept for a targeted DNA barcoding approach to identify shark species using trace DNA found at bite marks on recovered remains of hooked fish. Following laboratory validation, forensic analysis of swabs collected from samples of bitten demersal fish, led to the definitive identification of shark species involved in 100% of the incidences of depredation (n = 16).

          Related collections

          Most cited references39

          • Record: found
          • Abstract: found
          • Article: not found

          Bias in template-to-product ratios in multitemplate PCR.

          Bias introduced by the simultaneous amplification of specific genes from complex mixtures of templates remains poorly understood. To explore potential causes and the extent of bias in PCR amplification of 16S ribosomal DNAs (rDNAs), genomic DNAs of two closely and one distantly related bacterial species were mixed and amplified with universal, degenerate primers. Quantification and comparison of template and product ratios showed that there was considerable and reproducible overamplification of specific templates. Variability between replicates also contributed to the observed bias but in a comparatively minor way. Based on these initial observations, template dosage and differences in binding energies of permutations of the degenerate, universal primers were tested as two likely causes of this template-specific bias by using 16S rDNA templates modified by site-directed mutagenesis. When mixtures of mutagenized templates containing AT- and GC-rich priming sites were used, templates containing the GC-rich permutation amplified with higher efficiency, indicating that different primer binding energies may to a large extent be responsible for overamplification. In contrast, gene copy number was found to be an unlikely cause of the observed bias. Similarly, amplification from DNA extracted from a natural community to which different amounts of genomic DNA of a single bacterial species were added did not affect relative product ratios. Bias was reduced considerably by using high template concentrations, by performing fewer cycles, and by mixing replicate reaction preparations.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Shark interactions in pelagic longline fisheries

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Identification of shark species composition and proportion in the Hong Kong shark fin market based on molecular genetics and trade records.

              The burgeoning and largely unregulated trade in shark fins represents one of the most serious threats to shark populations worldwide. In Hong Kong, the world's largest shark fin market, fins are classified by traders into Chinese-name categories on the basis of market value, but the relationship between market category and shark species is unclear preventing identification of species that are the most heavily traded. To delineate these relationships, we designed a sampling strategy for collecting statistically sufficient numbers of fins from traders and categories under conditions of limited market access because of heightened trader sensitivities. Based on information from traders and morphological inspection, we hypothesized matches between market names and shark taxa for fins within 11 common trade categories. These hypotheses were tested using DNA-based species identification techniques to determine the concordance between market category and species. Only 14 species made up approximately 40% of the auctioned fin weight. The proportion of samples confirming the hypothesized match, or concordance, varied from 0.64 to 1 across the market categories. We incorporated the concordance information and available market auction records for these categories into stochastic models to estimate the contribution of each taxon by weight to the fin trade. Auctioned fin weight was dominated by the blue shark (Prionace glauca), which was 17% of the overall market. Other taxa, including the shortfin mako (Isurus oxyrinchus), silky (Carcharhinus falciformis), sandbar (C. obscurus), bull (C. leucas), hammerhead (Sphyrna spp.), and thresher (Alopias spp.), were at least 2-6% of the trade. Our approach to marketplace monitoring of wildlife products isparticularly applicable to situations in which quantitative data at the source of resource extraction are sparse and large-scale genetic testing is limited by budgetary or other market access constraints.
                Bookmark

                Author and article information

                Contributors
                Role: ConceptualizationRole: Formal analysisRole: InvestigationRole: MethodologyRole: ResourcesRole: ValidationRole: VisualizationRole: Writing – original draftRole: Writing – review & editing
                Role: ConceptualizationRole: Formal analysisRole: InvestigationRole: MethodologyRole: ValidationRole: VisualizationRole: Writing – original draftRole: Writing – review & editing
                Role: ConceptualizationRole: Funding acquisitionRole: Project administrationRole: ResourcesRole: Writing – original draftRole: Writing – review & editing
                Role: ConceptualizationRole: Formal analysisRole: Project administrationRole: ResourcesRole: Writing – original draftRole: Writing – review & editing
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, CA USA )
                1932-6203
                11 January 2019
                2019
                : 14
                : 1
                : e0210500
                Affiliations
                [1 ] Department of Primary Industries and Regional Development, Government of Western Australia, Hillarys, Western Australia, Australia
                [2 ] Centre for Evolutionary Biology, School of Biological Sciences, The University of Western Australia, Crawley, Western Australia, Australia
                Department of Agriculture and Water Resources, AUSTRALIA
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Author information
                http://orcid.org/0000-0002-7488-0608
                Article
                PONE-D-18-22553
                10.1371/journal.pone.0210500
                6329513
                30633772
                f8459b8d-3e88-45dd-9829-e79b8af1d3d2
                © 2019 Fotedar et al

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 6 August 2018
                : 23 December 2018
                Page count
                Figures: 4, Tables: 5, Pages: 14
                Funding
                The authors received no specific funding for this work.
                Categories
                Research Article
                Biology and Life Sciences
                Organisms
                Eukaryota
                Animals
                Vertebrates
                Fish
                Chondrichthyes
                Elasmobranchii
                Sharks
                Research and Analysis Methods
                Database and Informatics Methods
                Biological Databases
                Sequence Databases
                Research and Analysis Methods
                Database and Informatics Methods
                Bioinformatics
                Sequence Analysis
                Sequence Databases
                Research and Analysis Methods
                Database and Informatics Methods
                Bioinformatics
                Sequence Analysis
                Sequence Alignment
                Research and analysis methods
                Extraction techniques
                DNA extraction
                Biology and Life Sciences
                Molecular Biology
                Molecular Biology Techniques
                Artificial Gene Amplification and Extension
                Polymerase Chain Reaction
                Research and Analysis Methods
                Molecular Biology Techniques
                Artificial Gene Amplification and Extension
                Polymerase Chain Reaction
                Research and Analysis Methods
                Database and Informatics Methods
                Database Searching
                Sequence Similarity Searching
                Biology and Life Sciences
                Agriculture
                Fisheries
                Biology and life sciences
                Molecular biology
                Molecular biology techniques
                DNA barcoding
                Research and analysis methods
                Molecular biology techniques
                DNA barcoding
                Biology and life sciences
                Evolutionary biology
                Evolutionary systematics
                Molecular systematics
                DNA barcoding
                Biology and life sciences
                Taxonomy
                Evolutionary systematics
                Molecular systematics
                DNA barcoding
                Computer and information sciences
                Data management
                Taxonomy
                Evolutionary systematics
                Molecular systematics
                DNA barcoding
                Custom metadata
                All relevant data are within the paper or available from the GenBank database (accession numbers MG811816-MG811828; MG811803-MG811815; MK092067-MK092076).

                Uncategorized
                Uncategorized

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content267

                Cited by6

                Most referenced authors1,137