44
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Random Surfers on a Web Encyclopedia

      Preprint

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The random surfer model is a frequently used model for simulating user navigation behavior on the Web. Various algorithms, such as PageRank, are based on the assumption that the model represents a good approximation of users browsing a website. However, the way users browse the Web has been drastically altered over the last decade due to the rise of search engines. Hence, new adaptations for the established random surfer model might be required, which better capture and simulate this change in navigation behavior. In this article we compare the classical uniform random surfer to empirical navigation and page access data in a Web Encyclopedia. Our high level contributions are (i) a comparison of stationary distributions of different types of the random surfer to quantify the similarities and differences between those models as well as (ii) new insights into the impact of search engines on traditional user navigation. Our results suggest that the behavior of the random surfer is almost similar to those of users - as long as users do not use search engines. We also find that classical website navigation structures, such as navigation hierarchies or breadcrumbs, only exercise limited influence on user navigation anymore. Rather, a new kind of navigational tools (e.g., recommendation systems) might be needed to better reflect the changes in browsing behavior of existing users.

          Related collections

          Most cited references12

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Maps of random walks on complex networks reveal community structure

          To comprehend the multipartite organization of large-scale biological and social systems, we introduce a new information theoretic approach that reveals community structure in weighted and directed networks. The method decomposes a network into modules by optimally compressing a description of information flows on the network. The result is a map that both simplifies and highlights the regularities in the structure and their relationships. We illustrate the method by making a map of scientific communication as captured in the citation patterns of more than 6000 journals. We discover a multicentric organization with fields that vary dramatically in size and degree of integration into the network of science. Along the backbone of the network -- including physics, chemistry, molecular biology, and medicine -- information flows bidirectionally, but the map reveals a directional pattern of citation from the applied fields to the basic sciences.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            A General Definition of the Lorenz Curve

              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Detecting Memory and Structure in Human Navigation Patterns Using Markov Chain Models of Varying Order

              One of the most frequently used models for understanding human navigation on the Web is the Markov chain model, where Web pages are represented as states and hyperlinks as probabilities of navigating from one page to another. Predominantly, human navigation on the Web has been thought to satisfy the memoryless Markov property stating that the next page a user visits only depends on her current page and not on previously visited ones. This idea has found its way in numerous applications such as Google's PageRank algorithm and others. Recently, new studies suggested that human navigation may better be modeled using higher order Markov chain models, i.e., the next page depends on a longer history of past clicks. Yet, this finding is preliminary and does not account for the higher complexity of higher order Markov chain models which is why the memoryless model is still widely used. In this work we thoroughly present a diverse array of advanced inference methods for determining the appropriate Markov chain order. We highlight strengths and weaknesses of each method and apply them for investigating memory and structure of human navigation on the Web. Our experiments reveal that the complexity of higher order models grows faster than their utility, and thus we confirm that the memoryless model represents a quite practical model for human navigation on a page level. However, when we expand our analysis to a topical level, where we abstract away from specific page transitions to transitions between topics, we find that the memoryless assumption is violated and specific regularities can be observed. We report results from experiments with two types of navigational datasets (goal-oriented vs. free form) and observe interesting structural differences that make a strong argument for more contextual studies of human navigation in future work.
                Bookmark

                Author and article information

                Journal
                2015-07-16
                2015-08-04
                Article
                10.1145/2809563.2809598
                1507.04489
                ef1d9175-6aa1-424d-b9d5-e499d2a9dcad

                http://arxiv.org/licenses/nonexclusive-distrib/1.0/

                History
                Custom metadata
                8 pages
                cs.SI physics.soc-ph

                Social & Information networks,General physics
                Social & Information networks, General physics

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content180

                Most referenced authors108