44
views
0
recommends
+1 Recommend
2 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      DrugRep-KG: Toward Learning a Unified Latent Space for Drug Repurposing Using Knowledge Graphs

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Drug repurposing or repositioning (DR) refers to finding new therapeutic applications for existing drugs. Current computational DR methods face data representation and negative data sampling challenges. Although retrospective studies attempt to operate various representations, it is a crucial step for an accurate prediction to aggregate these features and bring the associations between drugs and diseases into a unified latent space. In addition, the number of unknown associations between drugs and diseases, which is considered negative data, is much higher than the number of known associations, or positive data, leading to an imbalanced dataset. In this regard, we propose the DrugRep-KG method, which applies a knowledge graph embedding approach for representing drugs and diseases, to address these challenges. Despite the typical DR methods that consider all unknown drug–disease associations as negative data, we select a subset of unknown associations, provided the disease occurs because of an adverse reaction to a drug. DrugRep-KG has been evaluated based on different settings and achieves an AUC-ROC (area under the receiver operating characteristic curve) of 90.83% and an AUC-PR (area under the precision-recall curve) of 90.10%, which are higher than in previous works. Besides, we checked the performance of our framework in finding potential drugs for coronavirus infection and skin-related diseases: contact dermatitis and atopic eczema. DrugRep-KG predicted beclomethasone for contact dermatitis, and fluorometholone, clocortolone, fluocinonide, and beclomethasone for atopic eczema, all of which have previously been proven to be effective in other studies. Fluorometholone for contact dermatitis is a novel suggestion by DrugRep-KG that should be validated experimentally. DrugRep-KG also predicted the associations between COVID-19 and potential treatments suggested by DrugBank, in addition to new drug candidates provided with experimental evidence. The data and code underlying this article are available at https://github.com/CBRC-lab/DrugRep-KG.

          Related collections

          Most cited references69

          • Record: found
          • Abstract: found
          • Article: not found

          SMOTE: Synthetic Minority Over-sampling Technique

          An approach to the construction of classifiers from imbalanced datasets is described. A dataset is imbalanced if the classification categories are not approximately equally represented. Often real-world data sets are predominately composed of ``normal'' examples with only a small percentage of ``abnormal'' or ``interesting'' examples. It is also the case that the cost of misclassifying an abnormal (interesting) example as a normal example is often much higher than the cost of the reverse error. Under-sampling of the majority (normal) class has been proposed as a good means of increasing the sensitivity of a classifier to the minority class. This paper shows that a combination of our method of over-sampling the minority (abnormal) class and under-sampling the majority (normal) class can achieve better classifier performance (in ROC space) than only under-sampling the majority class. This paper also shows that a combination of our method of over-sampling the minority class and under-sampling the majority class can achieve better classifier performance (in ROC space) than varying the loss ratios in Ripper or class priors in Naive Bayes. Our method of over-sampling the minority class involves creating synthetic minority class examples. Experiments are performed using C4.5, Ripper and a Naive Bayes classifier. The method is evaluated using the area under the Receiver Operating Characteristic curve (AUC) and the ROC convex hull strategy.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            UniProt: the universal protein knowledgebase in 2021

            Abstract The aim of the UniProt Knowledgebase is to provide users with a comprehensive, high-quality and freely accessible set of protein sequences annotated with functional information. In this article, we describe significant updates that we have made over the last two years to the resource. The number of sequences in UniProtKB has risen to approximately 190 million, despite continued work to reduce sequence redundancy at the proteome level. We have adopted new methods of assessing proteome completeness and quality. We continue to extract detailed annotations from the literature to add to reviewed entries and supplement these in unreviewed entries with annotations provided by automated systems such as the newly implemented Association-Rule-Based Annotator (ARBA). We have developed a credit-based publication submission interface to allow the community to contribute publications and annotations to UniProt entries. We describe how UniProtKB responded to the COVID-19 pandemic through expert curation of relevant entries that were rapidly made available to the research community through a dedicated portal. UniProt resources are available under a CC-BY (4.0) license via the web at https://www.uniprot.org/.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              DrugBank 5.0: a major update to the DrugBank database for 2018

              Abstract DrugBank (www.drugbank.ca) is a web-enabled database containing comprehensive molecular information about drugs, their mechanisms, their interactions and their targets. First described in 2006, DrugBank has continued to evolve over the past 12 years in response to marked improvements to web standards and changing needs for drug research and development. This year’s update, DrugBank 5.0, represents the most significant upgrade to the database in more than 10 years. In many cases, existing data content has grown by 100% or more over the last update. For instance, the total number of investigational drugs in the database has grown by almost 300%, the number of drug-drug interactions has grown by nearly 600% and the number of SNP-associated drug effects has grown more than 3000%. Significant improvements have been made to the quantity, quality and consistency of drug indications, drug binding data as well as drug-drug and drug-food interactions. A great deal of brand new data have also been added to DrugBank 5.0. This includes information on the influence of hundreds of drugs on metabolite levels (pharmacometabolomics), gene expression levels (pharmacotranscriptomics) and protein expression levels (pharmacoprotoemics). New data have also been added on the status of hundreds of new drug clinical trials and existing drug repurposing trials. Many other important improvements in the content, interface and performance of the DrugBank website have been made and these should greatly enhance its ease of use, utility and potential applications in many areas of pharmacological research, pharmaceutical science and drug education.
                Bookmark

                Author and article information

                Journal
                J Chem Inf Model
                J Chem Inf Model
                ci
                jcisd8
                Journal of Chemical Information and Modeling
                American Chemical Society
                1549-9596
                1549-960X
                06 April 2023
                24 April 2023
                : 63
                : 8
                : 2532-2545
                Affiliations
                []Department of Mathematics and Computer Science, Amirkabir University of Technology , Tehran 1591634311, Iran
                []School of Biological Science, Institute for Research in Fundamental Sciences (IPM) , Tehran 19395-5746, Iran
                [§ ]Laboratory of Systems Biology and Bioinformatics (LBB), Institute of Biochemistry and Biophysics, University of Tehran , Tehran 1417935840, Iran
                Author notes
                Author information
                https://orcid.org/0000-0003-4809-1311
                https://orcid.org/0000-0003-2849-3778
                https://orcid.org/0000-0002-7337-4404
                https://orcid.org/0000-0003-0659-5183
                Article
                10.1021/acs.jcim.2c01291
                10109243
                37023229
                d47aa31b-9cab-4236-8f20-68d25f8b7f27
                © 2023 American Chemical Society

                This article is made available via the PMC Open Access Subset for unrestricted RESEARCH re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic.

                History
                : 15 October 2022
                Categories
                Article
                Custom metadata
                ci2c01291
                ci2c01291

                Computational chemistry & Modeling
                Computational chemistry & Modeling

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content138

                Cited by3

                Most referenced authors1,398