109
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      NESTA: A Fast and Accurate First-order Method for Sparse Recovery

      Preprint
      , ,

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Accurate signal recovery or image reconstruction from indirect and possibly undersampled data is a topic of considerable interest; for example, the literature in the recent field of compressed sensing is already quite immense. Inspired by recent breakthroughs in the development of novel first-order methods in convex optimization, most notably Nesterov's smoothing technique, this paper introduces a fast and accurate algorithm for solving common recovery problems in signal processing. In the spirit of Nesterov's work, one of the key ideas of this algorithm is a subtle averaging of sequences of iterates, which has been shown to improve the convergence properties of standard gradient-descent algorithms. This paper demonstrates that this approach is ideally suited for solving large-scale compressed sensing reconstruction problems as 1) it is computationally efficient, 2) it is accurate and returns solutions with several correct digits, 3) it is flexible and amenable to many kinds of reconstruction problems, and 4) it is robust in the sense that its excellent performance across a wide range of problems does not depend on the fine tuning of several parameters. Comprehensive numerical experiments on realistic signals exhibiting a large dynamic range show that this algorithm compares favorably with recently proposed state-of-the-art methods. We also apply the algorithm to solve other problems for which there are fewer alternatives, such as total-variation minimization, and convex programs seeking to minimize the l1 norm of Wx under constraints, in which W is not diagonal.

          Related collections

          Most cited references16

          • Record: found
          • Abstract: not found
          • Article: not found

          Compressed sensing

            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Atomic Decomposition by Basis Pursuit

              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Near-Optimal Signal Recovery From Random Projections: Universal Encoding Strategies?

                Bookmark

                Author and article information

                Journal
                21 April 2009
                Article
                10.1137/090756855
                0904.3367
                c8f739d9-d5e5-402b-84ea-0c3e3973507a

                http://arxiv.org/licenses/nonexclusive-distrib/1.0/

                History
                Custom metadata
                SIAM J. Imaging Sci., 4 (2011) 1-39
                math.OC

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content38

                Cited by126

                Most referenced authors162