9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Microfluidics made easy: A robust low-cost constant pressure flow controller for engineers and cell biologists

      1 , 1 , 1 , 1 , 1
      Biomicrofluidics
      AIP Publishing

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Over the last decade, microfluidics has become increasingly popular in biology and bioengineering. While lab-on-a-chip fabrication costs have continued to decrease, the hardware required for delivering controllable fluid flows to the microfluidic devices themselves remains expensive and often cost prohibitive for researchers interested in starting a microfluidics project. Typically, microfluidic experiments require precise and tunable flow rates from a system that is simple to operate. While many labs use commercial platforms or syringe pumps, these solutions can cost thousands of dollars and can be cost prohibitive. Here, we present an inexpensive and easy-to-use constant pressure system for delivering flows to microfluidic devices. The controller costs less than half the price of a single syringe pump but can independently switch and deliver fluid through up to four separate fluidic inlets at known flow rates with significantly faster fluid response times. It is constructed of readily available pressure regulators, gauges, plastic connectors and adapters, and tubing. Flow rate is easily predicted and calibrated using hydraulic circuit analysis and capillary tubing resistors. Finally, we demonstrate the capabilities of the flow system by performing well-known microfluidic experiments for chemical gradient generation and emulsion droplet production.

          Related collections

          Most cited references20

          • Record: found
          • Abstract: found
          • Article: not found

          Design of pressure-driven microfluidic networks using electric circuit analogy.

          This article reviews the application of electric circuit methods for the analysis of pressure-driven microfluidic networks with an emphasis on concentration- and flow-dependent systems. The application of circuit methods to microfluidics is based on the analogous behaviour of hydraulic and electric circuits with correlations of pressure to voltage, volumetric flow rate to current, and hydraulic to electric resistance. Circuit analysis enables rapid predictions of pressure-driven laminar flow in microchannels and is very useful for designing complex microfluidic networks in advance of fabrication. This article provides a comprehensive overview of the physics of pressure-driven laminar flow, the formal analogy between electric and hydraulic circuits, applications of circuit theory to microfluidic network-based devices, recent development and applications of concentration- and flow-dependent microfluidic networks, and promising future applications. The lab-on-a-chip (LOC) and microfluidics community will gain insightful ideas and practical design strategies for developing unique microfluidic network-based devices to address a broad range of biological, chemical, pharmaceutical, and other scientific and technical challenges.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Human neural stem cell growth and differentiation in a gradient-generating microfluidic device.

            This paper describes a gradient-generating microfluidic platform for optimizing proliferation and differentiation of neural stem cells (NSCs) in culture. Microfluidic technology has great potential to improve stem cell (SC) cultures, whose promise in cell-based therapies is limited by the inability to precisely control their behavior in culture. Compared to traditional culture tools, microfluidic platforms should provide much greater control over cell microenvironment and rapid optimization of media composition using relatively small numbers of cells. Our platform exposes cells to a concentration gradient of growth factors under continuous flow, thus minimizing autocrine and paracrine signaling. Human NSCs (hNSCs) from the developing cerebral cortex were cultured for more than 1 week in the microfluidic device while constantly exposed to a continuous gradient of a growth factor (GF) mixture containing epidermal growth factor (EGF), fibroblast growth factor 2 (FGF2) and platelet-derived growth factor (PDGF). Proliferation and differentiation of NSCs into astrocytes were monitored by time-lapse microscopy and immunocytochemistry. The NSCs remained healthy throughout the entire culture period, and importantly, proliferated and differentiated in a graded and proportional fashion that varied directly with GF concentration. These concentration-dependent cellular responses were quantitatively similar to those measured in control chambers built into the device and in parallel cultures using traditional 6-well plates. This gradient-generating microfluidic platform should be useful for a wide range of basic and applied studies on cultured cells, including SCs.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Microfluidic flow focusing: drop size and scaling in pressure versus flow-rate-driven pumping.

              We experimentally study the production of micrometer-sized droplets using microfluidic technology and a flow-focusing geometry. Two distinct methods of flow control are compared: (i) control of the flow rates of the two phases and (ii) control of the inlet pressures of the two phases. In each type of experiment, the drop size l, velocity U and production frequency f are measured and compared as either functions of the flow-rate ratio or the inlet pressure ratio. The minimum drop size in each experiment is on the order of the flow focusing contraction width a. The variation in drop size as the flow control parameters are varied is significantly different between the flow-rate and inlet pressure controlled experiments.
                Bookmark

                Author and article information

                Journal
                Biomicrofluidics
                Biomicrofluidics
                AIP Publishing
                1932-1058
                May 2016
                May 2016
                : 10
                : 3
                : 034107
                Affiliations
                [1 ]Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Maryland Hall 220A, Baltimore, Maryland 21218, USA
                Article
                10.1063/1.4950753
                4874927
                27279931
                ba38bef5-4117-44f1-8e6d-9b630ad394ce
                © 2016

                https://publishing.aip.org/authors/rights-and-permissions

                History

                Comments

                Comment on this article

                scite_
                58
                0
                40
                0
                Smart Citations
                58
                0
                40
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content1,438

                Cited by16

                Most referenced authors148