The Ts65Dn mouse is the most widely used animal model of Down syndrome (DS). Differences in autonomic regulation of heart rate variability (HRV) in individuals with DS have been hypothesized. Pharmacological studies in animal models may help us understand mechanisms underlying observed changes in HRV in people with DS.
To investigate the use a new, noninvasive technique to assess cardiac autonomic modulation in Ts65Dn mice under the effect of adrenergic and cholinergic agonists.
We recorded electrocardiograms (ECGs) from 12 Ts65Dn and 12 euploid control mice. A 30‐min baseline recording was followed by the injection of an adrenergic (isoproterenol [Iso]) or cholinergic (carbachol [CCh]) agonist. Heart rate and HRV were analyzed using a series of methods customized for mice.
The ECG apparatus described here allowed us to detect noninvasively long series of heartbeats in freely‐moving animals. During baseline conditions, the yield of detectable heartbeats was 3%–27% of the estimated total number of events, which increased to 35%–70% during the 15‐min period after either Iso or CCh injections. Ts65Dn mice displayed a robust enhanced Iso‐induced negative chronotropic rebound response compared with euploid control mice. We observed a significantly smaller CCh response in Ts65Dn versus control euploid mice in the 6‐ to 10‐min‐interval postcarbachol injection.
This work showed that the techniques described here are sufficient for this type of study. However, future studies involving the use of more selective pharmacological agents and/or genetic manipulations will be key to advance a mechanistic understanding of cardiac autonomic regulation in DS.
We used a new, noninvasive technique to assess cardiac autonomic modulation in the Ts65Dn mouse model of Down syndrome under the effect of adrenergic and cholinergic agonists. This new ECG recording apparatus has the potential to be very useful to investigators studying heart rate and heart rate variability in rodent models of human disorders. However, future studies involving the use of more selective pharmacological agents and/or genetic manipulations of the mouse models of DS will be necessary to complement this work.
See how this article has been cited at scite.ai
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.