There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.
Plastic debris 1900 fibers per wash. This suggests that a large proportion of microplastic fibers found in the marine environment may be derived from sewage as a consequence of washing of clothes. As the human population grows and people use more synthetic textiles, contamination of habitats and animals by microplastic is likely to increase.
Microplastics (plastics < 5 mm, including nanoplastics which are < 0.1 μm) originate from the fragmentation of large plastic litter or from direct environmental emission. Their potential impacts in terrestrial ecosystems remain largely unexplored despite numerous reported effects on marine organisms. Most plastics arriving in the oceans were produced, used, and often disposed on land. Hence, it is within terrestrial systems that microplastics might first interact with biota eliciting ecologically relevant impacts. This article introduces the pervasive microplastic contamination as a potential agent of global change in terrestrial systems, highlights the physical and chemical nature of the respective observed effects, and discusses the broad toxicity of nanoplastics derived from plastic breakdown. Making relevant links to the fate of microplastics in aquatic continental systems, we here present new insights into the mechanisms of impacts on terrestrial geochemistry, the biophysical environment, and ecotoxicology. Broad changes in continental environments are possible even in particle-rich habitats such as soils. Furthermore, there is a growing body of evidence indicating that microplastics interact with terrestrial organisms that mediate essential ecosystem services and functions, such as soil dwelling invertebrates, terrestrial fungi, and plant-pollinators. Therefore, research is needed to clarify the terrestrial fate and effects of microplastics. We suggest that due to the widespread presence, environmental persistence, and various interactions with continental biota, microplastic pollution might represent an emerging global change threat to terrestrial ecosystems.
Studies about microplastics in various environments highlighted the ubiquity of anthropogenic fibers. As a follow-up of a recent study that emphasized the presence of man-made fibers in atmospheric fallout, this study is the first one to investigate fibers in indoor and outdoor air. Three different indoor sites were considered: two private apartments and one office. In parallel, the outdoor air was sampled in one site. The deposition rate of the fibers and their concentration in settled dust collected from vacuum cleaner bags were also estimated. Overall, indoor concentrations ranged between 1.0 and 60.0 fibers/m3. Outdoor concentrations are significantly lower as they range between 0.3 and 1.5 fibers/m3. The deposition rate of the fibers in indoor environments is between 1586 and 11,130 fibers/day/m2 leading to an accumulation of fibers in settled dust (190-670 fibers/mg). Regarding fiber type, 67% of the analyzed fibers in indoor environments are made of natural material, primarily cellulosic, while the remaining 33% fibers contain petrochemicals with polypropylene being predominant. Such fibers are observed in marine and continental studies dealing with microplastics. The observed fibers are supposedly too large to be inhaled but the exposure may occur through dust ingestion, particularly for young children.
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.