43
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Ultrathin van der Waals metalenses

      Preprint

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Ultrathin and flat optical lenses are essential for modern optical imaging, spectroscopy, and energy harvesting. Dielectric metasurfaces comprising nanoscale quasi-periodic resonator arrays are promising for such applications, as they can tailor the phase, amplitude, and polarization of light at subwavelength resolution, enabling multi-functional optical elements. To achieve 2\pi phase coverage, however, most dielectric metalenses need a thickness comparable to the wavelength, requiring fabrication of high-aspect-ratio scattering elements. Here, we report ultrathin dielectric metalenses made of van der Waals (vdW) materials, leveraging their high refractive indices and the incomplete phase design approach to achieve device thicknesses down to ~\lambda/10, operating at infrared and visible wavelengths. These materials have generated strong interest in recent years due to their advantageous optoelectronic properties. Using vdW metalenses, we demonstrate near diffraction-limited focusing and imaging, and exploit their layered nature to transfer the fabricated metalenses onto flexible substrates to show strain-induced tunable focusing. Our work enables further downscaling of optical elements and opportunities for integration of metasurface optics in ultra-miniature optoelectronic systems.

          Related collections

          Most cited references12

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Van der Waals heterostructures

          Research on graphene and other two-dimensional atomic crystals is intense and likely to remain one of the hottest topics in condensed matter physics and materials science for many years. Looking beyond this field, isolated atomic planes can also be reassembled into designer heterostructures made layer by layer in a precisely chosen sequence. The first - already remarkably complex - such heterostructures (referred to as 'van der Waals') have recently been fabricated and investigated revealing unusual properties and new phenomena. Here we review this emerging research area and attempt to identify future directions. With steady improvement in fabrication techniques, van der Waals heterostructures promise a new gold rush, rather than a graphene aftershock.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            2D materials and van der Waals heterostructures

            The physics of two-dimensional (2D) materials and heterostructures based on such crystals has been developing extremely fast. With new 2D materials, truly 2D physics has started to appear (e.g. absence of long-range order, 2D excitons, commensurate-incommensurate transition, etc). Novel heterostructure devices are also starting to appear - tunneling transistors, resonant tunneling diodes, light emitting diodes, etc. Composed from individual 2D crystals, such devices utilize the properties of those crystals to create functionalities that are not accessible to us in other heterostructures. We review the properties of novel 2D crystals and how their properties are used in new heterostructure devices.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Aberration-free ultra-thin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces

              The concept of optical phase discontinuities is applied to the design and demonstration of aberration-free planar lenses and axicons, comprising a phased array of ultrathin subwavelength spaced optical antennas. The lenses and axicons consist of radial distributions of V-shaped nanoantennas that generate respectively spherical wavefronts and non-diffracting Bessel beams at telecom wavelengths. Simulations are also presented to show that our aberration-free designs are applicable to high numerical aperture lenses such as flat microscope objectives.
                Bookmark

                Author and article information

                Journal
                09 July 2018
                Article
                1807.03458
                9f520dfb-3a75-45e3-8490-bdc62e864f36

                http://arxiv.org/licenses/nonexclusive-distrib/1.0/

                History
                Custom metadata
                physics.optics cond-mat.mes-hall

                Nanophysics,Optical materials & Optics
                Nanophysics, Optical materials & Optics

                Comments

                Comment on this article