22
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Critical Periods in the Development of Performance Capacity During Childhood and Adolescence

      , , , , ,
      European Journal of Physical Education
      Informa UK Limited

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references100

          • Record: found
          • Abstract: found
          • Article: not found

          Assessment and interpretation of aerobic fitness in children and adolescents.

          Our understanding of the development of children and adolescents' aerobic fitness is limited by ethical considerations and methodological constraints. Protocols, apparatus, and criteria of maximal effort used with adults are often unsuitable for use with children. In normal children and adolescents, peak VO2 increases with growth and maturation, although there are indications that girls' peak VO2 may level off around 14 years of age. Males exhibit higher values of peak VO2 than females, and the sex difference increases as they progress through adolescence. The difference between males and females has been attributed to the boys' greater muscle mass and hemoglobin concentration. It appears that boys experience an adolescent growth spurt in peak VO2, which reaches a maximum gain near the time of PHV, but data are insufficient to offer any generalization for girls. Peak VO2 has usually been expressed in relation to body mass, and with this convention it appears that boys' values are consistent throughout the developmental period, whereas girls' values decrease as they get older. This type of analysis may, however, have clouded our understanding of growth and maturational changes in peak VO2, and scaling for differences in body size may provide further clarification. If differences are shown where none were previously thought to exist, then physiological explanations must be sought. Methodological issues have also hindered the understanding of how children's blood lactate responses to exercise develop. The actual lactate level recorded during an exercise test is influenced by the site of sampling and the blood handling and assay techniques. Valid interstudy comparisons can only be made where similar procedures have been employed. In general, children demonstrate lower blood lactate levels at peak VO2 than adults, although individual variation is wide. Therefore the use of blood lactate measures to confirm the attainment of peak VO2 cannot be supported. Exercise at the same relative submaximal intensity elicits a lower blood lactate in children than in adults, but interpretation and identification of developmental and maturational patterns of response are limited by the use of different testing conditions and reference points (e.g., lactate threshold and fixed level reference points). There is growing evidence that the 2.5 mM reference level should be used in preference to the 4.0 mM level, as the adult criterion occurs close to maximal exercise in many children and adolescents. Explanations for child-adult differences in blood lactate responses to exercise are difficult to elucidate.(ABSTRACT TRUNCATED AT 400 WORDS)
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Growth and physical performance relative to the timing of the adolescent spurt.

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Strength training effects in prepubescent boys.

              Possible changes in muscle size and function due to resistance training were examined in prepubertal boys. Thirteen boys (9-11 yr) volunteered for each of the training and control groups. Progressive resistance training was performed three times weekly for 20 wk. Measurements consisted of the following: 1 repetition maximum (RM) bench press and leg press; maximal voluntary isometric and isokinetic elbow flexion and knee extension strength; evoked isometric contractile properties of the right elbow flexors and knee extensors; muscle cross-sectional area (CSA) by computerized tomography at the mid-right upper arm and thigh; and motor unit activation (MUA) by the interpolated twitch procedure. Training significantly increased 1 RM bench press (35%) and leg press (22%), isometric elbow flexion (37%) and knee extension strength (25% and 13% at 90 degrees and 120 degrees, respectively), isokinetic elbow flexion (26%) and knee extension (21%) strength, and evoked twitch torque of the elbow flexors (30%) and knee extensors (30%). There were no significant effects of training on the time-related contractile properties (time to peak torque, half-relaxation time), CSA, or %MUA of the elbow flexors or knee extensors. There was, however, a trend toward increased MUA for the elbow flexors and knee extensors in the trained group. Strength gains were independent of changes in muscle CSA, and the increases in twitch torque suggest possible adaptations in muscle excitation-contraction coupling. Improved motor skill coordination (especially during the early phase of training), a tendency toward increased MUA, and other undetermined neurological adaptations, including better coordination of the involved muscle groups, are likely the major determinants of the strength gains in this study.
                Bookmark

                Author and article information

                Journal
                European Journal of Physical Education
                European Journal of Physical Education
                Informa UK Limited
                1362-7120
                July 07 2006
                July 07 2006
                : 4
                : 1
                : 75-119
                Article
                10.1080/1740898990040106
                9bf74a71-c271-4080-8348-609afa1b10d9
                © 2006
                History

                Comments

                Comment on this article