34
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Bankruptcy prediction for SMEs using transactional data and two-stage multiobjective feature selection

      , , , , , ,
      Decision Support Systems
      Elsevier BV

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references47

          • Record: found
          • Abstract: found
          • Article: not found

          Fast unfolding of communities in large networks

          Journal of Statistical Mechanics: Theory and Experiment, 2008(10), P10008
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Feature selection based on mutual information: criteria of max-dependency, max-relevance, and min-redundancy.

            Feature selection is an important problem for pattern classification systems. We study how to select good features according to the maximal statistical dependency criterion based on mutual information. Because of the difficulty in directly implementing the maximal dependency condition, we first derive an equivalent form, called minimal-redundancy-maximal-relevance criterion (mRMR), for first-order incremental feature selection. Then, we present a two-stage feature selection algorithm by combining mRMR and other more sophisticated feature selectors (e.g., wrappers). This allows us to select a compact set of superior features at very low cost. We perform extensive experimental comparison of our algorithm and other methods using three different classifiers (naive Bayes, support vector machine, and linear discriminate analysis) and four different data sets (handwritten digits, arrhythmia, NCI cancer cell lines, and lymphoma tissues). The results confirm that mRMR leads to promising improvement on feature selection and classification accuracy.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Learning from Imbalanced Data

                Bookmark

                Author and article information

                Journal
                Decision Support Systems
                Decision Support Systems
                Elsevier BV
                01679236
                January 2021
                January 2021
                : 140
                : 113429
                Article
                10.1016/j.dss.2020.113429
                9b042bba-7a06-4aab-b7e4-1ff41cc147b0
                © 2021

                https://www.elsevier.com/tdm/userlicense/1.0/

                http://creativecommons.org/licenses/by-nc-nd/4.0/

                History

                Comments

                Comment on this article