300
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Predicting Drug–Target Interactions Using Probabilistic Matrix Factorization

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Quantitative analysis of known drug–target interactions emerged in recent years as a useful approach for drug repurposing and assessing side effects. In the present study, we present a method that uses probabilistic matrix factorization (PMF) for this purpose, which is particularly useful for analyzing large interaction networks. DrugBank drugs clustered based on PMF latent variables show phenotypic similarity even in the absence of 3D shape similarity. Benchmarking computations show that the method outperforms those recently introduced provided that the input data set of known interactions is sufficiently large—which is the case for enzymes and ion channels, but not for G-protein coupled receptors (GPCRs) and nuclear receptors. Runs performed on DrugBank after hiding 70% of known interactions show that, on average, 88 of the top 100 predictions hit the hidden interactions. De novo predictions permit us to identify new potential interactions. Drug–target pairs implicated in neurobiological disorders are overrepresented among de novo predictions.

          Related collections

          Most cited references28

          • Record: found
          • Abstract: found
          • Article: not found

          Conformer Generation with OMEGA: Algorithm and Validation Using High Quality Structures from the Protein Databank and Cambridge Structural Database

          Here, we present the algorithm and validation for OMEGA, a systematic, knowledge-based conformer generator. The algorithm consists of three phases: assembly of an initial 3D structure from a library of fragments; exhaustive enumeration of all rotatable torsions using values drawn from a knowledge-based list of angles, thereby generating a large set of conformations; and sampling of this set by geometric and energy criteria. Validation of conformer generators like OMEGA has often been undertaken by comparing computed conformer sets to experimental molecular conformations from crystallography, usually from the Protein Databank (PDB). Such an approach is fraught with difficulty due to the systematic problems with small molecule structures in the PDB. Methods are presented to identify a diverse set of small molecule structures from cocomplexes in the PDB that has maximal reliability. A challenging set of 197 high quality, carefully selected ligand structures from well-solved models was obtained using these methods. This set will provide a sound basis for comparison and validation of conformer generators in the future. Validation results from this set are compared to the results using structures of a set of druglike molecules extracted from the Cambridge Structural Database (CSD). OMEGA is found to perform very well in reproducing the crystallographic conformations from both these data sets using two complementary metrics of success.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Prediction of drug–target interaction networks from the integration of chemical and genomic spaces

            Motivation: The identification of interactions between drugs and target proteins is a key area in genomic drug discovery. Therefore, there is a strong incentive to develop new methods capable of detecting these potential drug–target interactions efficiently. Results: In this article, we characterize four classes of drug–target interaction networks in humans involving enzymes, ion channels, G-protein-coupled receptors (GPCRs) and nuclear receptors, and reveal significant correlations between drug structure similarity, target sequence similarity and the drug–target interaction network topology. We then develop new statistical methods to predict unknown drug–target interaction networks from chemical structure and genomic sequence information simultaneously on a large scale. The originality of the proposed method lies in the formalization of the drug–target interaction inference as a supervised learning problem for a bipartite graph, the lack of need for 3D structure information of the target proteins, and in the integration of chemical and genomic spaces into a unified space that we call ‘pharmacological space’. In the results, we demonstrate the usefulness of our proposed method for the prediction of the four classes of drug–target interaction networks. Our comprehensively predicted drug–target interaction networks enable us to suggest many potential drug–target interactions and to increase research productivity toward genomic drug discovery. Availability: Softwares are available upon request. Contact: Yoshihiro.Yamanishi@ensmp.fr Supplementary information: Datasets and all prediction results are available at http://web.kuicr.kyoto-u.ac.jp/supp/yoshi/drugtarget/.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Large Scale Prediction and Testing of Drug Activity on Side-Effect Targets

              Summary Discovering the unintended “off-targets” that predict adverse drug reactions (ADRs) is daunting by empirical methods alone. Drugs can act on multiple protein targets, some of which can be unrelated by traditional molecular metrics, and hundreds of proteins have been implicated in side effects. We therefore explored a computational strategy to predict the activity of 656 marketed drugs on 73 unintended “side effect” targets. Approximately half of the predictions were confirmed, either from proprietary databases unknown to the method or by new experimental assays. Affinities for these new off-targets ranged from 1 nM to 30 μM. To explore relevance, we developed an association metric to prioritize those new off-targets that explained side effects better than any known target of a given drug, creating a Drug-Target-ADR network. Among these new associations was the prediction that the abdominal pain side effect of the synthetic estrogen chlorotrianisene was mediated through its newly discovered inhibition of the enzyme COX-1. The clinical relevance of this inhibition was borne-out in whole human blood platelet aggregation assays. This approach may have wide application to de-risking toxicological liabilities in drug discovery.
                Bookmark

                Author and article information

                Journal
                J Chem Inf Model
                J Chem Inf Model
                ci
                jcisd8
                Journal of Chemical Information and Modeling
                American Chemical Society
                1549-9596
                1549-960X
                01 December 2013
                23 December 2013
                : 53
                : 12
                : 3399-3409
                Affiliations
                [1] Department of Computational & Systems Biology and Department of Pathology, School of Medicine, University of Pittsburgh , Pennsylvania 15213, United States
                Author notes
                Article
                10.1021/ci400219z
                3871285
                24289468
                92c9a7bb-f91d-4e5a-bb6f-40d3d1d1c240
                Copyright © 2013 American Chemical Society
                History
                : 10 April 2013
                Funding
                National Institutes of Health, United States
                Categories
                Article
                Custom metadata
                ci400219z
                ci-2013-00219z

                Computational chemistry & Modeling
                Computational chemistry & Modeling

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content131

                Cited by60

                Most referenced authors1,650