9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Calibrate, Emulate, Sample

      Preprint

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Many parameter estimation problems arising in applications are best cast in the framework of Bayesian inversion. This allows not only for an estimate of the parameters, but also for the quantification of uncertainties in the estimates. Often in such problems the parameter-to-data map is very expensive to evaluate, and computing derivatives of the map, or derivative-adjoints, may not be feasible. Additionally, in many applications only noisy evaluations of the map may be available. We propose an approach to Bayesian inversion in such settings that builds on the derivative-free optimization capabilities of ensemble Kalman inversion methods. The overarching approach is to first use ensemble Kalman sampling (EKS) to calibrate the unknown parameters to fit the data; second, to use the output of the EKS to emulate the parameter-to-data map; third, to sample from an approximate Bayesian posterior distribution in which the parameter-to-data map is replaced by its emulator. This results in a principled approach to approximate Bayesian inference that requires only a small number of evaluations of the (possibly noisy approximation of the) parameter-to-data map. It does not require derivatives of this map, but instead leverages the documented power of ensemble Kalman methods. Furthermore, the EKS has the desirable property that it evolves the parameter ensembles towards the regions in which the bulk of the parameter posterior mass is located, thereby locating them well for the emulation phase of the methodology. In essence, the EKS methodology provides a cheap solution to the design problem of where to place points in parameter space to efficiently train an emulator of the parameter-to-data map for the purposes of Bayesian inversion.

          Related collections

          Author and article information

          Journal
          10 January 2020
          Article
          2001.03689
          8c6dfe73-13cb-49bf-ad95-0884cf563732

          http://arxiv.org/licenses/nonexclusive-distrib/1.0/

          History
          Custom metadata
          stat.CO

          Mathematical modeling & Computation
          Mathematical modeling & Computation

          Comments

          Comment on this article