36
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Evaluation of Trace Element and Metal Accumulation and Edibility Risk Associated with Consumption of Labeo umbratus from the Vaal Dam, South Africa

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          With the occurrence of recreational and small scale subsistence fishing activities at the Vaal Dam, South Africa, consumption of fish from this dam may result in health risks associated with trace elements and metals. The Vaal Dam is one of the largest dams in South Africa, located between the Gauteng Province and Orange Free State, and supplies water to approximately 11.6 million people. A total of 38 specimens of the benthic cyprinid fish Labeo umbratus were collected from the Vaal Dam during two surveys, in 2011 and 2016. Samples of muscle, liver, kidney, gill and spinal cord were analysed, along with sediment samples collected during the same surveys. Thirteen trace elements were analysed in the samples by Inductively Coupled Plasma–Optical Emission Spectrometry, Inductively Coupled Plasma–Mass Spectrometry, Atomic Absorption Spectroscopy and Total Reflection X-ray Fluorescence spectroscopy. This is the first survey on trace element and Hg accumulation in this fish species from the Vaal Dam and target hazard quotients (THQ) indicated that there is a risk for consumers of fish for As and Hg (THQ = 1.43 and 1.14 respectively). Although levels of trace elements in this impoundment have shown little change for a number of years and are lower than global background levels, studies detailing the accumulation of metals by fish inhabiting the Vaal Dam have indicated that trace elements in muscle tissue are above food safety guidelines. Trace element levels in L. umbratus are lower compared to other species inhabiting the Vaal Dam and further indicate that risks for consumers can be decreased if humans relying on fish from the Vaal Dam preferentially consume this species over others.

          Related collections

          Most cited references63

          • Record: found
          • Abstract: found
          • Article: not found

          Ecological effects, transport, and fate of mercury: a general review

          Chemosphere, 40(12), 1335-1351
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Trace minerals in fish nutrition

              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Biomarkers of Oxidative Stress and Heavy Metal Levels as Indicators of Environmental Pollution in African Cat Fish (Clarias gariepinus) from Nigeria Ogun River

              Levels of Zn, Cu, Cd, As, and Pb in the kidney, Liver, Gills and Heart of African cat fish (Clarias gariepinus) from the Ogun River in Ogun State located close to six major industries in the South Western part of Nigeria, were determined using Bulk Scientific Atomic Absorption Spectrophotometer. Fishes were also collected from Government owned fish farm in Agodi, Ibadan which was considered a reference site. The activities of superoxide dismutase (SOD), catalase (CAT), glutathione S-transferase (GST), glutathione (GSH) concentration and malondialdehyde (MDA) formation were also determined. The trend of accumulation of the metals in the organs is as follows: Heart - Zn > Cu > Pb > As > Cd; Gills - Zn > Cu > Pb > Cd > As; Kidney - Zn > Cu > Pb > As > Cd; Liver -Zn > Cu > Pb > As > Cd. The order of concentration of the metals in the organs is as follows: Arsenite - Kidney > Liver > Gills > Heart; Zinc - Gills > Liver > Kidney > Heart; Lead- Liver > Kidney > Gills > Heart; Copper- Kidney > Liver > Gills > Heart; Cadmium > Liver > Gills > Kidney > Heart. The levels of heavy metals ranged between 0.25–8.96 ppm in the heart, 0.69– 19.05 ppm in the kidneys, 2.10–19.75 ppm in the liver and 1.95–20.35 ppm in the gills. SOD activity increased by 61% in the liver, 50% in the kidney and in the heart by 28 % while a significant decrease (44%) was observed in the gill of Clarias gariepinus from Ogun river compared to that Agodi fish farm (P<0.001). On the contrary there was 46%, 41%, 50% and 19% decrease in CAT activity in the liver, kidney, gills and heart respectively. The levels of GST activities in the liver, kidney and heart of Clarias gariepinus from Ogun river increased by 62%, 72% and 37% respectively (P<0.001) whereas there was a significant decrease (41%) in the gills (P<0.05) compared to that from the Agodi fish farm. GSH concentration increased by 81%, 83% and 53% in the liver, kidney and heart respectively but decreased by 44% in the gills. MDA levels of Clarias gariepinus were significantly (P<0.001) elevated in the liver, kidney, gills and heart by 177%, 102%, 168% and 71% respectively compared to that from Agodi fish farm. Overall, the results demonstrate that alteration in the antioxidant enzymes, glutathione system and induction of lipid peroxidation reflects the presence of heavy metals which may cause oxidative stress in the Clarias gariepinus from Ogun River. The study therefore provides a rational use of biomarkers of oxidative stress in biomonitoring of aquatic pollution.
                Bookmark

                Author and article information

                Journal
                Int J Environ Res Public Health
                Int J Environ Res Public Health
                ijerph
                International Journal of Environmental Research and Public Health
                MDPI
                1661-7827
                1660-4601
                23 June 2017
                July 2017
                : 14
                : 7
                : 678
                Affiliations
                [1 ]Department of Zoology, University of Johannesburg, P.O. Box 524, Auckland Park, Johannesburg 2006, South Africa; bericg@ 123456uj.ac.za (B.M.G.); ebrahim.hussain@ 123456aucklandcouncil.govt.nz (E.H.); franz.jirsa@ 123456univie.ac.at (F.J.)
                [2 ]Institute of Inorganic Chemistry, University of Vienna, Waehringer Strasse 42, Vienna 1090, Austria
                Author notes
                [* ]Correspondence: aoldewage@ 123456uj.ac.za ; Tel.: +27-11-559-2449
                Article
                ijerph-14-00678
                10.3390/ijerph14070678
                5551116
                28644416
                88ed3a98-2704-4690-982c-2165c592b80a
                © 2017 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 05 May 2017
                : 16 June 2017
                Categories
                Article

                Public health
                biomonitoring,edibility,labeo umbratus,trace element accumulation,vaal river,mercury and arsenic

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content68

                Cited by6

                Most referenced authors496