30
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      An Adaptive Online HDP-HMM for Segmentation and Classification of Sequential Data

      Preprint
      , ,

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In the recent years, the desire and need to understand sequential data has been increasing, with particular interest in sequential contexts such as patient monitoring, understanding daily activities, video surveillance, stock market and the like. Along with the constant flow of data, it is critical to classify and segment the observations on-the-fly, without being limited to a rigid number of classes. In addition, the model needs to be capable of updating its parameters to comply with possible evolutions. This interesting problem, however, is not adequately addressed in the literature since many studies focus on offline classification over a pre-defined class set. In this paper, we propose a principled solution to this gap by introducing an adaptive online system based on Markov switching models with hierarchical Dirichlet process priors. This infinite adaptive online approach is capable of segmenting and classifying the sequential data over unlimited number of classes, while meeting the memory and delay constraints of streaming contexts. The model is further enhanced by introducing a learning rate, responsible for balancing the extent to which the model sustains its previous learning (parameters) or adapts to the new streaming observations. Experimental results on several variants of stationary and evolving synthetic data and two video datasets, TUM Assistive Kitchen and collatedWeizmann, show remarkable performance in segmentation and classification, particularly for evolutionary sequences with changing distributions and/or containing new, unseen classes.

          Related collections

          Author and article information

          Journal
          2015-03-09
          2015-03-12
          Article
          1503.02761
          883cc05d-737c-4b1b-8b04-caa7813cbd1d

          http://arxiv.org/licenses/nonexclusive-distrib/1.0/

          History
          Custom metadata
          23 pages, 9 figures and 4 tables
          stat.ML cs.LG

          Machine learning,Artificial intelligence
          Machine learning, Artificial intelligence

          Comments

          Comment on this article