12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Core/Shell Gel Beads with Embedded Halloysite Nanotubes for Controlled Drug Release

      , , , , ,
      Coatings
      MDPI AG

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The use of nanocomposites based on biopolymers and nanoparticles for controlled drug release is an attractive notion. We used halloysite nanotubes that were promising candidates for the loading and release of active molecules due to their hollow cavity. Gel beads based on chitosan with uniformly dispersed halloysite nanotubes were obtained by a dropping method. Alginate was used to generate a coating layer over the hybrid gel beads. This proposed procedure succeeded in controlling the morphology at the mesoscale and it had a relevant effect on the release profile of the model drug from the nanotube cavity.

          Related collections

          Most cited references57

          • Record: found
          • Abstract: found
          • Article: not found

          Classification, processing and application of hydrogels: A review.

          This article aims to review the literature concerning the choice of selectivity for hydrogels based on classification, application and processing. Super porous hydrogels (SPHs) and superabsorbent polymers (SAPs) represent an innovative category of recent generation highlighted as an ideal mould system for the study of solution-dependent phenomena. Hydrogels, also termed as smart and/or hungry networks, are currently subject of considerable scientific research due to their potential in hi-tech applications in the biomedical, pharmaceutical, biotechnology, bioseparation, biosensor, agriculture, oil recovery and cosmetics fields. Smart hydrogels display a significant physiochemical change in response to small changes in the surroundings. However, such changes are reversible; therefore, the hydrogels are capable of returning to its initial state after a reaction as soon as the trigger is removed.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Halloysite clay nanotubes for controlled release of protective agents.

            Halloysite aluminosilicate nanotubes with a 15 nm lumen, 50 nm external diameter, and length of 800 +/- 300 nm have been developed as an entrapment system for loading, storage, and controlled release of anticorrosion agents and biocides. Fundamental research to enable the control of release rates from hours to months is being undertaken. By variation of internal fluidic properties, the formation of nanoshells over the nanotubes and by creation of smart caps at the tube ends it is possible to develop further means of controlling the rate of release. Anticorrosive halloysite coatings are in development and a self-healing approach has been developed for repair mechanisms through response activation to external impacts. In this Perspective, applications of halloysite as nanometer-scale containers are discussed, including the use of halloysite tubes as drug releasing agents, as biomimetic reaction vessels, and as additives in biocide and protective coatings. Halloysite nanotubes are available in thousands of tons, and remain sophisticated and novel natural nanomaterials which can be used for the loading of agents for metal and plastic anticorrosion and biocide protection.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Novel Biocompatible Polysaccharide-Based Self-Healing Hydrogel

                Bookmark

                Author and article information

                Journal
                COATED
                Coatings
                Coatings
                MDPI AG
                2079-6412
                February 2019
                January 24 2019
                : 9
                : 2
                : 70
                Article
                10.3390/coatings9020070
                83328949-5d10-454c-8f69-7ae8bb6f36f5
                © 2019

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content406

                Cited by28

                Most referenced authors592