13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Ubiquitin carboxyl-terminal hydrolases are required for period maintenance of the circadian clock at high temperature in Arabidopsis

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Protein ubiquitylation participates in a number of essential cellular processes including signal transduction and transcription, often by initiating the degradation of specific substrates through the 26S proteasome. Within the ubiquitin-proteasome system, deubiquitylating enzymes (DUBs) not only help generate and maintain the supply of free ubiquitin monomers, they also directly control functions and activities of specific target proteins by modulating the pool of ubiquitylated species. Ubiquitin carboxyl-terminal hydrolases (UCHs) belong to an enzymatic subclass of DUBs, and are represented by three members in Arabidopsis, UCH1, UCH2 and UCH3. UCH1 and UCH2 influence auxin-dependent developmental pathways in Arabidopsis through their deubiquitylation activities, whereas biological and enzymatic functions of UCH3 remain unclear. Here, we demonstrate that Arabidopsis UCH3 acts to maintain the period of the circadian clock at high temperatures redundantly with UCH1 and UCH2. Whereas single uch1, uch2 and uch3 mutants have weak circadian phenotypes, the triple uch mutant displays a drastic lengthening of period at high temperatures that is more extreme than the uch1 uch2 double mutant. UCH3 also possesses a broad deubiquitylation activity against a range of substrates that link ubiquitin via peptide and isopeptide linkages. While the protein target(s) of UCH1-3 are not yet known, we propose that these DUBs act on one or more factors that control period length of the circadian clock through removal of their bound ubiquitin moieties, thus ensuring that the clock oscillates with a proper period even at elevated temperatures.

          Related collections

          Most cited references30

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Tape-Arabidopsis Sandwich - a simpler Arabidopsis protoplast isolation method

          Background Protoplasts isolated from leaves are useful materials in plant research. One application, the transient expression of recombinant genes using Arabidopsis mesophyll protoplasts (TEAMP), is currently commonly used for studies of subcellular protein localization, promoter activity, and in vivo protein-protein interactions. This method requires cutting leaves into very thin slivers to collect mesophyll cell protoplasts, a procedure that often causes cell damage, may yield only a few good protoplasts, and is time consuming. In addition, this protoplast isolation method normally requires a large number of leaves derived from plants grown specifically under low-light conditions, which may be a concern when material availability is limited such as with mutant plants, or in large scale experiments. Results In this report, we present a new procedure that we call the Tape-Arabidopsis Sandwich. This is a simple and fast mesophyll protoplast isolation method. Two kinds of tape (Time tape adhered to the upper epidermis and 3 M Magic tape to the lower epidermis) are used to make a "Tape-Arabidopsis Sandwich". The Time tape supports the top side of the leaf during manipulation, while tearing off the 3 M Magic tape allows easy removal of the lower epidermal layer and exposes mesophyll cells to cell wall digesting enzymes when the leaf is later incubated in an enzyme solution. The protoplasts released into solution are collected and washed for further use. For TEAMP, plasmids carrying a gene expression cassette for a fluorescent protein can be successfully delivered into protoplasts isolated from mature leaves grown under optimal conditions. Alternatively, these protoplasts may be used for bimolecular fluorescence complementation (BiFC) to investigate protein-protein interactions in vivo, or for Western blot analysis. A significant advantage of this protocol over the current method is that it allows the generation of protoplasts in less than 1 hr, and allows TEAMP transfection to be carried out within 2 hr. Conclusion The protoplasts generated by this new Tape-Arabidopsis Sandwich method are suitable for the same range of research applications as those that use the current method, but require less operator skill, equipment and time.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            PSEUDO-RESPONSE REGULATORS 9, 7, and 5 are transcriptional repressors in the Arabidopsis circadian clock.

            An interlocking transcriptional-translational feedback loop of clock-associated genes is thought to be the central oscillator of the circadian clock in plants. TIMING OF CAB EXPRESSION1 (also called PSEUDO-RESPONSE REGULATOR1 [PRR1]) and two MYB transcription factors, CIRCADIAN CLOCK ASSOCIATED1 (CCA1) and LATE ELONGATED HYPOCOTYL (LHY), play pivotal roles in the loop. Genetic studies have suggested that PRR9, PRR7, and PRR5 also act within or close to the loop; however, their molecular functions remain unknown. Here, we demonstrate that PRR9, PRR7, and PRR5 act as transcriptional repressors of CCA1 and LHY. PRR9, PRR7, and PRR5 each suppress CCA1 and LHY promoter activities and confer transcriptional repressor activity to a heterologous DNA binding protein in a transient reporter assay. Using a glucocorticoid-induced PRR5-GR (glucorticoid receptor) construct, we found that PRR5 directly downregulates CCA1 and LHY expression. Furthermore, PRR9, PRR7, and PRR5 associate with the CCA1 and LHY promoters in vivo, coincident with the timing of decreased CCA1 and LHY expression. These results suggest that the repressor activities of PRR9, PRR7, and PRR5 on the CCA1 and LHY promoter regions constitute the molecular mechanism that accounts for the role of these proteins in the feedback loop of the circadian clock.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Arabidopsis circadian clock protein, TOC1, is a DNA-binding transcription factor.

              The first described feedback loop of the Arabidopsis circadian clock is based on reciprocal regulation between Timing of CAB Expression 1 (TOC1) and Circadian Clock-associated 1 (CCA1)/late elongated hypocotyl (LHY). CCA1 and LHY are Myb transcription factors that bind directly to the TOC1 promoter to negatively regulate its expression. Conversely, the activity of TOC1 has remained less well characterized. Genetic data support that TOC1 is necessary for the reactivation of CCA1/LHY, but there is little description of its biochemical function. Here we show that TOC1 occupies specific genomic regions in the CCA1 and LHY promoters. Purified TOC1 binds directly to DNA through its CCT domain, which is similar to known DNA-binding domains. Chemical induction and transient overexpression of TOC1 in Arabidopsis seedlings cause repression of CCA1/LHY expression, demonstrating that TOC1 can repress direct targets, and mutation or deletion of the CCT domain prevents this repression showing that DNA-binding is necessary for TOC1 action. Furthermore, we use the Gal4/UAS system in Arabidopsis to show that TOC1 acts as a general transcriptional repressor, and that repression activity is in the pseudoreceiver domain of the protein. To identify the genes regulated by TOC1 on a genomic scale, we couple TOC1 chemical induction with microarray analysis and identify previously unexplored potential TOC1 targets and output pathways. Taken together, these results define a biochemical action for the core clock protein TOC1 and refine our perspective on how plant clocks function.
                Bookmark

                Author and article information

                Contributors
                hryosuke@icu.ac.jp
                coupland@mpipz.mpg.de
                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group UK (London )
                2045-2322
                19 November 2019
                19 November 2019
                2019
                : 9
                : 17030
                Affiliations
                [1 ]ISNI 0000 0001 0660 6765, GRID grid.419498.9, Department of Plant Developmental Biology, , Max Planck Institute for Plant Breeding Research, ; Carl-von-Linne Weg 10, D-50829 Cologne, Germany
                [2 ]GRID grid.411724.5, Department of Natural Sciences, , International Christian University, ; 3-10-2 Osawa, Mitaka, 181-8585 Tokyo, Japan
                [3 ]ISNI 0000 0001 2167 3675, GRID grid.14003.36, Department of Genetics, , University of Wisconsin-Madison, ; Madison, Wisconsin 53706 USA
                [4 ]ISNI 0000 0001 2355 7002, GRID grid.4367.6, Department of Biology, , Washington University in St. Louis, ; Campus Box 1137, One Brookings Drive, St. Louis, Missouri 63130 USA
                [5 ]Present Address: Bayer Crop Science, 800 N Lindbergh Blvd, St Louis, Missouri 63146 USA
                [6 ]ISNI 0000 0001 2168 1229, GRID grid.9224.d, Present Address: Plant Development Unit, Institute for Plant Biochemistry and Photosynthesis, Consejo Superior de Investigaciones Científicas, , Universidad de Sevilla, ; 49th Américo Vespucio Avenue, Sevilla, 41092 Spain
                Author information
                http://orcid.org/0000-0001-8063-0974
                Article
                53229
                10.1038/s41598-019-53229-8
                6863813
                31745110
                7e78e923-1e8d-4542-be13-3b6de6af2969
                © The Author(s) 2019

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 14 June 2019
                : 28 August 2019
                Funding
                Funded by: FundRef https://doi.org/10.13039/501100001691, MEXT | Japan Society for the Promotion of Science (JSPS);
                Funded by: FundRef https://doi.org/10.13039/501100004189, Max-Planck-Gesellschaft (Max Planck Society);
                Categories
                Article
                Custom metadata
                © The Author(s) 2019

                Uncategorized
                gene regulation,gene expression,proteases
                Uncategorized
                gene regulation, gene expression, proteases

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content81

                Cited by13

                Most referenced authors527