There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.
Abstract
The patient-made term ‘Long Covid’ is, we argue, a helpful and capacious term that
is needed to address key medical, epidemiological and socio-political challenges posed
by diverse symptoms persisting beyond four weeks after symptom onset suggestive of
coronavirus disease 2019 (COVID-19). An international movement of patients (which
includes all six authors) brought the persistence and heterogeneity of long-term symptoms
to widespread visibility. The same grassroots movement introduced the term ‘Long Covid’
(and the cognate term ‘long-haulers’) to intervene in relation to widespread assumptions
about disease severity and duration. Persistent symptoms following severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2) infection are now one of the most pressing clinical
and public health phenomena to address: their cause(s) is/are unknown, their effects
can be debilitating, and the percentage of patients affected is unclear, though likely
significant. The term ‘Long Covid’ is now used in scientific literature, the media,
and in interactions with the WHO. Uncertainty regarding its value and meaning, however,
remains. In this Open Letter, we explain the advantages of the term ‘Long Covid’ and
bring clarity to some pressing issues of use and definition. We also point to the
importance of centring patient experience and expertise in relation to ‘Long Covid’
research, as well as the provision of care and rehabilitation.
This case series describes COVID-19 symptoms persisting a mean of 60 days after onset among Italian patients previously discharged from COVID-19 hospitalization.
Recent studies have provided insights into the pathogenesis of coronavirus disease 2019 (COVID-19) 1–4 . However, the longitudinal immunological correlates of disease outcome remain unclear. Here we serially analysed immune responses in 113 patients with moderate or severe COVID-19. Immune profiling revealed an overall increase in innate cell lineages, with a concomitant reduction in T cell number. An early elevation in cytokine levels was associated with worse disease outcomes. Following an early increase in cytokines, patients with moderate COVID-19 displayed a progressive reduction in type 1 (antiviral) and type 3 (antifungal) responses. By contrast, patients with severe COVID-19 maintained these elevated responses throughout the course of the disease. Moreover, severe COVID-19 was accompanied by an increase in multiple type 2 (anti-helminths) effectors, including interleukin-5 (IL-5), IL-13, immunoglobulin E and eosinophils. Unsupervised clustering analysis identified four immune signatures, representing growth factors (A), type-2/3 cytokines (B), mixed type-1/2/3 cytokines (C), and chemokines (D) that correlated with three distinct disease trajectories. The immune profiles of patients who recovered from moderate COVID-19 were enriched in tissue reparative growth factor signature A, whereas the profiles of those with who developed severe disease had elevated levels of all four signatures. Thus, we have identified a maladapted immune response profile associated with severe COVID-19 and poor clinical outcome, as well as early immune signatures that correlate with divergent disease trajectories.
Question What are the cardiovascular effects in unselected patients with recent coronavirus disease 2019 (COVID-19)? Findings In this cohort study including 100 patients recently recovered from COVID-19 identified from a COVID-19 test center, cardiac magnetic resonance imaging revealed cardiac involvement in 78 patients (78%) and ongoing myocardial inflammation in 60 patients (60%), which was independent of preexisting conditions, severity and overall course of the acute illness, and the time from the original diagnosis. Meaning These findings indicate the need for ongoing investigation of the long-term cardiovascular consequences of COVID-19. This cohort study evaluates the presence of myocardial injury in unselected patients recently recovered from coronavirus disease 2019 (COVID-19). Importance Coronavirus disease 2019 (COVID-19) continues to cause considerable morbidity and mortality worldwide. Case reports of hospitalized patients suggest that COVID-19 prominently affects the cardiovascular system, but the overall impact remains unknown. Objective To evaluate the presence of myocardial injury in unselected patients recently recovered from COVID-19 illness. Design, Setting, and Participants In this prospective observational cohort study, 100 patients recently recovered from COVID-19 illness were identified from the University Hospital Frankfurt COVID-19 Registry between April and June 2020. Exposure Recent recovery from severe acute respiratory syndrome coronavirus 2 infection, as determined by reverse transcription–polymerase chain reaction on swab test of the upper respiratory tract. Main Outcomes and Measures Demographic characteristics, cardiac blood markers, and cardiovascular magnetic resonance (CMR) imaging were obtained. Comparisons were made with age-matched and sex-matched control groups of healthy volunteers (n = 50) and risk factor–matched patients (n = 57). Results Of the 100 included patients, 53 (53%) were male, and the mean (SD) age was 49 (14) years. The median (IQR) time interval between COVID-19 diagnosis and CMR was 71 (64-92) days. Of the 100 patients recently recovered from COVID-19, 67 (67%) recovered at home, while 33 (33%) required hospitalization. At the time of CMR, high-sensitivity troponin T (hsTnT) was detectable (greater than 3 pg/mL) in 71 patients recently recovered from COVID-19 (71%) and significantly elevated (greater than 13.9 pg/mL) in 5 patients (5%). Compared with healthy controls and risk factor–matched controls, patients recently recovered from COVID-19 had lower left ventricular ejection fraction, higher left ventricle volumes, and raised native T1 and T2. A total of 78 patients recently recovered from COVID-19 (78%) had abnormal CMR findings, including raised myocardial native T1 (n = 73), raised myocardial native T2 (n = 60), myocardial late gadolinium enhancement (n = 32), or pericardial enhancement (n = 22). There was a small but significant difference between patients who recovered at home vs in the hospital for native T1 mapping (median [IQR], 1119 [1092-1150] ms vs 1141 [1121-1175] ms; P = .008) and hsTnT (4.2 [3.0-5.9] pg/dL vs 6.3 [3.4-7.9] pg/dL; P = .002) but not for native T2 mapping. None of these measures were correlated with time from COVID-19 diagnosis (native T1: r = 0.07; P = .47; native T2: r = 0.14; P = .15; hsTnT: r = −0.07; P = .50). High-sensitivity troponin T was significantly correlated with native T1 mapping ( r = 0.33; P < .001) and native T2 mapping ( r = 0.18; P = .01). Endomyocardial biopsy in patients with severe findings revealed active lymphocytic inflammation. Native T1 and T2 were the measures with the best discriminatory ability to detect COVID-19–related myocardial pathology. Conclusions and Relevance In this study of a cohort of German patients recently recovered from COVID-19 infection, CMR revealed cardiac involvement in 78 patients (78%) and ongoing myocardial inflammation in 60 patients (60%), independent of preexisting conditions, severity and overall course of the acute illness, and time from the original diagnosis. These findings indicate the need for ongoing investigation of the long-term cardiovascular consequences of COVID-19.
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.