There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.
Abstract
Introduction
Dermatofibrosarcoma protuberans (DFSP) originated as keloid sarcoma, gaining its current
designation in 1925. DFSP exhibits slow growth, categorizing it as a low- to intermediate-grade
malignant sarcoma. Initially presenting as a small, firm, irregular skin nodule, it
undergoes sudden, rapid growth, forming a prominent mass. While locally aggressive,
distant metastasis is rare. DFSP affects mainly the torso then proximal extremities.
Case Presentation
In this case study, we described a 57-year-old male individual who presented with
a chest midline swelling that was progressing in size. A punch biopsy showed inconclusive
results. Thus, a wide local excision was carried out along with sending the initial
biopsy slides to Mayo Clinic for second opinion. A diagnosis of DFSP was confirmed,
which is an uncommon and locally aggressive tumor affecting soft tissues. The primary
histological diagnosis relies on immunohistochemical stains, enabling the distinction
between DFSP and other fibrous tumors.
Conclusion
Diagnosing DFSP is challenging due to its similarity to other skin lesions. A multidisciplinary
approach is vital for accurate diagnosis and management.
Dermatofibrosarcoma protuberans (DP), an infiltrative skin tumour of intermediate malignancy, presents specific features such as reciprocal translocations t(17;22)(q22;q13) and supernumerary ring chromosomes derived from the t(17;22). In this report, the breakpoints from translocations and rings in DP and its juvenile form, giant cell fibroblastoma (GCF), were characterised on the genomic and RNA level. These rearrangements fuse the platelet-derived growth factor B-chain (PDGFB, c-sis proto-oncogene) and the collagen type I alpha 1 (COL1A1) genes. PDGFB has transforming activity and is a potent mitogen for a number of cell types, but its role in oncogenic processes is not fully understood. COL1A1 is a major constituent of the connective tissue matrix. Neither PDGFB nor COL1A1 have so far been implicated in any tumour translocations. These gene fusions delete exon 1 of PDGFB, and release this growth factor from its normal regulation.
Dermatofibrosarcoma protuberans (DP) is a rare, slow-growing, infiltrating dermal neoplasm of intermediate malignancy, made up of spindle-shaped tumor cells often positive for CD34. The preferred treatment is wide surgical excision with pathologically negative margins. At the cytogenetic level, DP cells are characterized by either supernumerary ring chromosomes, which have been shown by using fluorescence in situ hybridization techniques to be derived from chromosome 22 and to contain low-level amplified sequences from 17q22-qter and 22q10-q13.1, or t(17;22), that are most often unbalanced. Both the rings and linear der(22) contain a specific fusion of COL1A1 with PDGFB. Similar to other tumors, the COL1A1-PDGFB fusion is occasionally cryptic, associated with complex chromosomal rearrangements. Although rings have been mainly observed in adults, translocations have been reported in all pediatric cases. DP is therefore a unique example of a tumor in which (i) the same molecular event occurs either on rings or linear translocation derivatives, (ii) the chromosomal abnormalities display an age-related pattern, and (iii) the presence of the specific fusion gene is associated with the gain of chromosomal segments, probably taking advantage of gene dosage effects. In all DP cases that underwent molecular investigations, the breakpoint localization in PDGFB was found to be remarkably constant, placing exon 2 under the control of the COL1A1 promoter. In contrast, the COL1A1 breakpoint was found to be variably located within the exons of the alpha-helical coding region (exons 6-49). No preferential COL1A1 breakpoint and no correlation between the breakpoint location and the age of the patient or any clinical or histological particularity have been described. The COL1A1-PDGFB fusion is detectable by multiplex RT-PCR with a combination of forward primers designed from a variety of COL1A1 exons and one reverse primer from PDGFB exon 2. Recent studies have determined the molecular identity of "classical" DP, giant cell fibroblastoma, Bednar tumor, adult superficial fibrosarcoma, and the granular cell variant of DP. In approximately 8% of DP cases, the COL1A1-PDGFB fusion is not found, suggesting that genes other than COL1A1 or PDGFB might be involved in a subset of cases. It has been proposed that PDGFB acts as a mitogen in DP cells by autocrine stimulation of the PDGF receptor. It is encouraging that inhibitory effects of the PDGF receptor tyrosine kinase antagonist imatinib mesylate have been demonstrated in vivo; such targeted therapies might be warranted in the near future for treatment of the few DP cases not manageable by surgery. Copyright 2003 Wiley-Liss, Inc.
Dermatofibrosarcoma protuberans (DFSP) is a cutaneous, locally aggressive spindle cell tumor of intermediate malignancy. Tumor cells are reactive for CD34 and characterized by a t(17;22) translocation or a supernumerary ring chromosome that results in the fusion of exon 2 of PDGFB to various exons of the COL1A1 gene. We developed a multiplex reverse transcription polymerase chain reaction (RT-PCR) assay to detect fusion transcripts for all possible COL1A1 breakpoints. Twenty-seven formalin-fixed, paraffin-embedded DFSP cases were analyzed using 18 COL1A1 forward primers and 1 exon 2 PDGFB reverse primer. Sequence analysis was performed to definitively characterize breakpoints. Results were correlated with histology, immunohistochemistry, PDGFB break-apart fluorescence in situ hybridization analysis, and cytogenetics when available. Fusion transcripts were detected by RT-PCR in all but one DFSP case. Sequencing revealed a PDGFB exon 2 breakpoint in all cases. COL1A1 breakpoints were in exons 7 (1 patient), 10 (1), 29 (2), 40 (1), 46 (3), and 49 (2), and intronic between exons 13:14 (1), 26:27 (2), 30:31 (1) 33:34 (1), 43:44 (7), 45:46 (1), and 46:47 (1). Three novel COL1A1 breakpoints were identified, intronic between exons 13:14 (1), 30:31 (1) and in exon 49 (2). There was no correlation found between breakpoints and age, sex, or histologic variants. Using this sensitive multiplex RT-PCR assay in combination with fluorescence in situ hybridization, we found COL1A1-PDGFB rearrangements appear more prevalent in DFSP than previously reported. Its detection may be particularly helpful in the differential diagnosis of atypical, fibrosarcomatous, and metastatic DFSP.
This article is licensed under the Creative Commons Attribution-NonCommercial 4.0
International License (CC BY-NC) (
http://www.karger.com/Services/OpenAccessLicense). Usage and distribution for commercial purposes requires written permission.
History
Date
received
: 7
December
2023
Date
accepted
: 28
December
2023
Date: 2024
Page count
Figures: 4,
References: 21,
Pages: 7
Funding
This study received funding from Qatar National Library for open access publication.
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.