42
views
0
recommends
+1 Recommend
3 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found

      Macroalgal biorefinery concepts for the circular bioeconomy: A review on biotechnological developments and future perspectives

      , , , ,
      Renewable and Sustainable Energy Reviews
      Elsevier BV

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references206

          • Record: found
          • Abstract: not found
          • Article: not found

          Technology development for the production of biobased products from biorefinery carbohydrates—the US Department of Energy’s “Top 10” revisited

            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            A quantitative review of the effects of biochar application to soils on crop productivity using meta-analysis

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Natural-origin polymers as carriers and scaffolds for biomolecules and cell delivery in tissue engineering applications.

              The present paper intends to overview a wide range of natural-origin polymers with special focus on proteins and polysaccharides (the systems more inspired on the extracellular matrix) that are being used in research, or might be potentially useful as carriers systems for active biomolecules or as cell carriers with application in the tissue engineering field targeting several biological tissues. The combination of both applications into a single material has proven to be very challenging though. The paper presents also some examples of commercially available natural-origin polymers with applications in research or in clinical use in several applications. As it is recognized, this class of polymers is being widely used due to their similarities with the extracellular matrix, high chemical versatility, typically good biological performance and inherent cellular interaction and, also very significant, the cell or enzyme-controlled degradability. These biocharacteristics classify the natural-origin polymers as one of the most attractive options to be used in the tissue engineering field and drug delivery applications.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                Renewable and Sustainable Energy Reviews
                Renewable and Sustainable Energy Reviews
                Elsevier BV
                13640321
                November 2021
                November 2021
                : 151
                : 111553
                Article
                10.1016/j.rser.2021.111553
                73cf456e-d9c4-4e26-b2c0-2c1431215e9b
                © 2021

                https://www.elsevier.com/tdm/userlicense/1.0/

                History

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content4,718

                Cited by27

                Most referenced authors1,988