11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Creation of Half-metallic f -orbital Dirac Fermion with Superlight Elements in Orbital-Designed Molecular Lattice

      Preprint

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Magnetism in solids generally originates from the localized d- or f-orbitals that are hosted by heavy transition-metal elements. Here, we demonstrate a novel mechanism for designing half-metallic f-orbital Dirac fermion from superlight sp-elements. Combining first-principles and model calculations, we show that bare and flat-band-sandwiched (FBS) Dirac bands can be created when C20 molecules are deposited into a 2D hexagonal lattice, which are composed of f-molecular orbitals (MOs) derived from sp-atomic orbitals (AOs). Furthermore, charge doping of the FBS Dirac bands induces spontaneous spin-polarization, converting the system into a half-metallic Dirac state. Based on this discovery, a model of spin field effect transistor is proposed to generate and transport 100\% spin-polarized carriers. Our finding illustrates a novel concept to realize exotic quantum states by manipulating MOs, instead of AOs, in orbital-designed molecular crystal lattices.

          Related collections

          Most cited references3

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Half-Metallic Graphene Nanoribbons

          Electrical current can be completely spin polarized in a class of materials known as half-metals, as a result of the coexistence of metallic nature for electrons with one spin orientation and insulating for electrons with the other. Such asymmetric electronic states for the different spins have been predicted for some ferromagnetic metals - for example, the Heusler compounds- and were first observed in a manganese perovskite. In view of the potential for use of this property in realizing spin-based electronics, substantial efforts have been made to search for half-metallic materials. However, organic materials have hardly been investigated in this context even though carbon-based nanostructures hold significant promise for future electronic device. Here we predict half-metallicity in nanometre-scale graphene ribbons by using first-principles calculations. We show that this phenomenon is realizable if in-plane homogeneous electric fields are applied across the zigzag-shaped edges of the graphene nanoribbons, and that their magnetic property can be controlled by the external electric fields. The results are not only of scientific interests in the interplay between electric fields and electronic spin degree of freedom in solids but may also open a new path to explore spintronics at nanometre scale, based on graphene.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Dual-gated MoS2/WSe2 van der Waals tunnel diodes and transistors.

            Two-dimensional layered semiconductors present a promising material platform for band-to-band-tunneling devices given their homogeneous band edge steepness due to their atomically flat thickness. Here, we experimentally demonstrate interlayer band-to-band tunneling in vertical MoS2/WSe2 van der Waals (vdW) heterostructures using a dual-gate device architecture. The electric potential and carrier concentration of MoS2 and WSe2 layers are independently controlled by the two symmetric gates. The same device can be gate modulated to behave as either an Esaki diode with negative differential resistance, a backward diode with large reverse bias tunneling current, or a forward rectifying diode with low reverse bias current. Notably, a high gate coupling efficiency of ∼80% is obtained for tuning the interlayer band alignments, arising from weak electrostatic screening by the atomically thin layers. This work presents an advance in the fundamental understanding of the interlayer coupling and electron tunneling in semiconductor vdW heterostructures with important implications toward the design of atomically thin tunnel transistors.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Nanoscale atoms in solid-state chemistry.

              We describe a solid-state material formed from binary assembly of atomically precise molecular clusters. [Co6Se8(PEt3)6][C60]2 and [Cr6Te8(PEt3)6][C60]2 assembled into a superatomic relative of the cadmium iodide (CdI2) structure type. These solid-state materials showed activated electronic transport with activation energies of 100 to 150 millielectron volts. The more reducing cluster Ni9Te6(PEt3)8 transferred more charge to the fullerene and formed a rock-salt-related structure. In this material, the constituent clusters are able to interact electronically to produce a magnetically ordered phase at low temperature, akin to atoms in a solid-state compound.
                Bookmark

                Author and article information

                Journal
                2017-03-11
                Article
                1703.03931
                62d82ce4-5e07-4fb2-ae8b-78da9f8f193c

                http://arxiv.org/licenses/nonexclusive-distrib/1.0/

                History
                Custom metadata
                cond-mat.mes-hall

                Comments

                Comment on this article