60
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Bacterial Communities Associated with Porites White Patch Syndrome (PWPS) on Three Western Indian Ocean (WIO) Coral Reefs

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The scleractinian coral Porites lutea, an important reef-building coral on western Indian Ocean reefs (WIO), is affected by a newly-reported white syndrome (WS) the Porites white patch syndrome (PWPS). Histopathology and culture-independent molecular techniques were used to characterise the microbial communities associated with this emerging disease. Microscopy showed extensive tissue fragmentation generally associated with ovoid basophilic bodies resembling bacterial aggregates. Results of 16S rRNA sequence analysis revealed a high variability between bacterial communities associated with PWPS-infected and healthy tissues in P. lutea, a pattern previously reported in other coral diseases such as black band disease (BBD), white band disease (WBD) and white plague diseases (WPD). Furthermore, substantial variations in bacterial communities were observed at the different sampling locations, suggesting that there is no strong bacterial association in Porites lutea on WIO reefs. Several sequences affiliated with potential pathogens belonging to the Vibrionaceae and Rhodobacteraceae were identified, mainly in PWPS-infected coral tissues. Among them, only two ribotypes affiliated to Shimia marina (NR043300.1) and Vibrio hepatarius (NR025575.1) were consistently found in diseased tissues from the three geographically distant sampling localities. The role of these bacterial species in PWPS needs to be tested experimentally.

          Related collections

          Most cited references26

          • Record: found
          • Abstract: found
          • Article: not found

          Coral-associated bacteria and their role in the biogeochemical cycling of sulfur.

          Marine bacteria play a central role in the degradation of dimethylsulfoniopropionate (DMSP) to dimethyl sulfide (DMS) and acrylic acid, DMS being critical to cloud formation and thereby cooling effects on the climate. High concentrations of DMSP and DMS have been reported in scleractinian coral tissues although, to date, there have been no investigations into the influence of these organic sulfur compounds on coral-associated bacteria. Two coral species, Montipora aequituberculata and Acropora millepora, were sampled and their bacterial communities were characterized by both culture-dependent and molecular techniques. Four genera, Roseobacter, Spongiobacter, Vibrio, and Alteromonas, which were isolated on media with either DMSP or DMS as the sole carbon source, comprised the majority of clones retrieved from coral mucus and tissue 16S rRNA gene clone libraries. Clones affiliated with Roseobacter sp. constituted 28% of the M. aequituberculata tissue libraries, while 59% of the clones from the A. millepora libraries were affiliated with sequences related to the Spongiobacter genus. Vibrio spp. were commonly isolated from DMS and acrylic acid enrichments and were also present in 16S rRNA gene libraries from coral mucus, suggesting that under "normal" environmental conditions, they are a natural component of coral-associated communities. Genes homologous to dddD, and dddL, previously implicated in DMSP degradation, were also characterized from isolated strains, confirming that bacteria associated with corals have the potential to metabolize this sulfur compound when present in coral tissues. Our results demonstrate that DMSP, DMS, and acrylic acid potentially act as nutrient sources for coral-associated bacteria and that these sulfur compounds are likely to play a role in structuring bacterial communities in corals, with important consequences for the health of both corals and coral reef ecosystems.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Partitioning of bacterial communities between seawater and healthy, black band diseased, and dead coral surfaces.

            Distinct partitioning has been observed in the composition and diversity of bacterial communities inhabiting the surface and overlying seawater of three coral species infected with black band disease (BBD) on the southern Caribbean island of Curaçao, Netherlands Antilles. PCR amplification and sequencing of bacterial 16S rRNA genes (rDNA) with universally conserved primers have identified over 524 unique bacterial sequences affiliated with 12 bacterial divisions. The molecular sequences exhibited less than 5% similarity in bacterial community composition between seawater and the healthy, black band diseased, and dead coral surfaces. The BBD bacterial mat rapidly migrates across and kills the coral tissue. Clone libraries constructed from the BBD mat were comprised of eight bacterial divisions and 13% unknowns. Several sequences representing bacteria previously found in other marine and terrestrial organisms (including humans) were isolated from the infected coral surfaces, including Clostridium spp., Arcobacter spp., Campylobacter spp., Cytophaga fermentans, Cytophaga columnaris, and Trichodesmium tenue.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The bacterial ecology of a plague-like disease affecting the Caribbean coral Montastrea annularis.

              The bacterial communities associated with the Caribbean coral Montastrea annularis showing tissue lesions indicative of a White Plague (WP)-like disease were investigated. Two molecular screening techniques using bacterial 16S rDNA genes were used and demonstrated distinct differences between the bacterial communities of diseased and non-diseased coral tissues, and also in relation to the proximity of tissue lesions on diseased corals. Differences between non-diseased corals and the apparently healthy tissues remote from the tissue lesion in affected corals indicates a 'whole coral' response to a relatively small area of infection with a perturbation in the normal microbial flora occurring prior to the onset of visible signs of disease. These whole organism changes in the microbial flora may serve as a bioindicator of environmental stress and disease. There were striking similarities between the 16S rDNA sequence composition associated with the WP-like disease studied here and that previously reported in association with black band disease (BBD) in coral. Similarities included the presence of a potential pathogen, an alpha-proteobacterium identified as the causal agent of juvenile oyster disease (JOD). The WP-like disease studied here is apparently different to WP Type ii because the bacterial species previously identified as the causal agent of WP Type ii was not detected, although the symptoms of the two diseases are similar.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2013
                31 December 2013
                : 8
                : 12
                : e83746
                Affiliations
                [1 ]Agence pour la Recherche et la Valorisation Marines (ARVAM), Ste Clotilde, Réunion Island, France
                [2 ]Oceanographic Research Institute (ORI), Durban, KwaZulu-Natal, South Africa
                [3 ]Institut de la Recherche pour le développement (IRD), Ste Clotilde, Réunion Island, France
                [4 ]Centre de Recherche et de Veille sur les maladies émergentes dans l'Océan Indien (CRVOI), Ste Clotilde, Réunion Island, France
                [5 ]University of Réunion Island, Ste Clotilde, Réunion Island, France
                King Abdullah University of Science and Technology, Saudi Arabia
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Conceived and designed the experiments: MGS PT JPQ PC MHS JT. Performed the experiments: MGS. Analyzed the data: MGS PT MHS. Contributed reagents/materials/analysis tools: MGH PT JT JPQ PC MHS. Wrote the paper: MGS PT MHS.

                Article
                PONE-D-13-24781
                10.1371/journal.pone.0083746
                3877091
                24391819
                60c27e29-e456-4b71-8c01-9188017c8a5a
                Copyright @ 2013

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 14 June 2013
                : 7 November 2013
                Page count
                Pages: 10
                Funding
                This work was co-funded by the European Union (EU, FEDER), the Regional Council of Reunion, the French Ministry of Higher Education and Research (DRRT), the French Department of Ecology, Sustainable Development, Transportation and Housing (DEAL), the South African Association for Marine Biological research (SAAMBR), the French Ministry of Overseas (MOM) and the Western Indian Ocean Marine Science Association(WIOMSA). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology
                Computational Biology
                Sequence Analysis
                Ecology
                Marine Ecology
                Coral Reefs
                Marine Biology
                Corals
                Microbiology
                Bacterial Pathogens
                Pathogenesis
                Earth Sciences
                Marine and Aquatic Sciences
                Marine Biology

                Uncategorized
                Uncategorized

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content436

                Cited by33

                Most referenced authors235