52
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Transcriptional Basis of Psoriasis from Large Scale Gene Expression Studies: The Importance of Moving towards a Precision Medicine Approach

      ,
      International Journal of Molecular Sciences
      MDPI AG

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Transcriptome profiling techniques, such as microarrays and RNA sequencing (RNA-seq), are valuable tools for deciphering the regulatory network underlying psoriasis and have revealed large number of differentially expressed genes in lesional and non-lesional skin. Such approaches provide a more precise measurement of transcript levels and their isoforms than any other methods. Large cohort transcriptomic analyses have greatly improved our understanding of the physiological and molecular mechanisms underlying disease pathogenesis and progression. Here, we mostly review the findings of some important large scale psoriatic transcriptomic studies, and the benefits of such studies in elucidating potential therapeutic targets and biomarkers for psoriasis treatment. We also emphasised the importance of looking into the alternatively spliced RNA isoforms/transcripts in psoriasis, rather than focussing only on the gene-level annotation. The neutrophil and blood transcriptome signature in psoriasis is also briefly reviewed, as it provides the immune status information of patients and is a less invasive platform. The application of precision medicine in current management of psoriasis, by combining transcriptomic data, improves the clinical response outcome in individual patients. Drugs tailored to individual patient’s genetic profile will greatly improve patient outcome and cost savings for the healthcare system.

          Related collections

          Most cited references92

          • Record: found
          • Abstract: found
          • Article: not found

          Alternative Isoform Regulation in Human Tissue Transcriptomes

          Through alternative processing of pre-mRNAs, individual mammalian genes often produce multiple mRNA and protein isoforms that may have related, distinct or even opposing functions. Here we report an in-depth analysis of 15 diverse human tissue and cell line transcriptomes based on deep sequencing of cDNA fragments, yielding a digital inventory of gene and mRNA isoform expression. Analysis of mappings of sequence reads to exon-exon junctions indicated that 92-94% of human genes undergo alternative splicing (AS), ∼86% with a minor isoform frequency of 15% or more. Differences in isoform-specific read densities indicated that a majority of AS and of alternative cleavage and polyadenylation (APA) events vary between tissues, while variation between individuals was ∼2- to 3-fold less common. Extreme or ‘switch-like’ regulation of splicing between tissues was associated with increased sequence conservation in regulatory regions and with generation of full-length open reading frames. Patterns of AS and APA were strongly correlated across tissues, suggesting coordinated regulation of these processes, and sequence conservation of a subset of known regulatory motifs in both alternative introns and 3′ UTRs suggested common involvement of specific factors in tissue-level regulation of both splicing and polyadenylation.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Psoriasis.

            Psoriasis is an immune-mediated, genetic disease manifesting in the skin or joints or both. A diverse team of clinicians with a range of expertise is often needed to treat the disease. Psoriasis provides many challenges including high prevalence, chronicity, disfiguration, disability, and associated comorbidity. Understanding the role of immune function in psoriasis and the interplay between the innate and adaptive immune system has helped to manage this complex disease, which affects patients far beyond the skin. In this Seminar, we highlight the clinical diversity of psoriasis and associated comorbid diseases. We describe recent developments in psoriasis epidemiology, pathogenesis, and genetics to better understand present trends in psoriasis management. Our key objective is to raise awareness of the complexity of this multifaceted disease, the potential of state-of-the-art therapeutic approaches, and the need for early diagnosis and comprehensive management of patients with psoriasis.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Deep surveying of alternative splicing complexity in the human transcriptome by high-throughput sequencing.

              We carried out the first analysis of alternative splicing complexity in human tissues using mRNA-Seq data. New splice junctions were detected in approximately 20% of multiexon genes, many of which are tissue specific. By combining mRNA-Seq and EST-cDNA sequence data, we estimate that transcripts from approximately 95% of multiexon genes undergo alternative splicing and that there are approximately 100,000 intermediate- to high-abundance alternative splicing events in major human tissues. From a comparison with quantitative alternative splicing microarray profiling data, we also show that mRNA-Seq data provide reliable measurements for exon inclusion levels.
                Bookmark

                Author and article information

                Contributors
                Journal
                IJMCFK
                International Journal of Molecular Sciences
                IJMS
                MDPI AG
                1422-0067
                June 2022
                May 30 2022
                : 23
                : 11
                : 6130
                Article
                10.3390/ijms23116130
                35682804
                544b2eda-f67b-45e9-86a5-a7af2d383f2a
                © 2022

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article