Assessing population responses to climate‐related environmental change is key to understanding the adaptive potential of the species as a whole. Coralline algae are critical components of marine shallow water ecosystems where they function as important ecosystem engineers. Populations of the calcifying algae C orallina officinalis from the center (southern UK) and periphery (northern Spain) of the North Atlantic species natural distribution were selected to test for functional differentiation in thermal stress response. Physiological measurements of calcification, photosynthesis, respiration, growth rates, oxygen, and calcification evolution curves were performed using closed cell respirometry methods. Species identity was genetically confirmed via DNA barcoding. Through a common garden approach, we identified distinct vulnerability to thermal stress of central and peripheral populations. Southern populations showed a decrease in photosynthetic rate under environmental conditions of central locations, and central populations showed a decline in calcification rates under southern conditions. This shows that the two processes of calcification and photosynthesis are not as tightly coupled as previously assumed. How the species as whole will react to future climatic changes will be determined by the interplay of local environmental conditions and these distinct population adaptive traits.
This article has earned an Open Materials Badge for making publicly available the components of the research methodology needed to reproduce the reported procedure and analysis. All materials are available at https://doi.pangaea.de/10.1594/PANGAEA.899568.
See how this article has been cited at scite.ai
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.