There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.
Large language models (LLMs) have demonstrated impressive capabilities, but the bar for clinical applications is high. Attempts to assess the clinical knowledge of models typically rely on automated evaluations based on limited benchmarks. Here, to address these limitations, we present MultiMedQA, a benchmark combining six existing medical question answering datasets spanning professional medicine, research and consumer queries and a new dataset of medical questions searched online, HealthSearchQA. We propose a human evaluation framework for model answers along multiple axes including factuality, comprehension, reasoning, possible harm and bias. In addition, we evaluate Pathways Language Model 1 (PaLM, a 540-billion parameter LLM) and its instruction-tuned variant, Flan-PaLM 2 on MultiMedQA. Using a combination of prompting strategies, Flan-PaLM achieves state-of-the-art accuracy on every MultiMedQA multiple-choice dataset (MedQA 3 , MedMCQA 4 , PubMedQA 5 and Measuring Massive Multitask Language Understanding (MMLU) clinical topics 6 ), including 67.6% accuracy on MedQA (US Medical Licensing Exam-style questions), surpassing the prior state of the art by more than 17%. However, human evaluation reveals key gaps. To resolve this, we introduce instruction prompt tuning, a parameter-efficient approach for aligning LLMs to new domains using a few exemplars. The resulting model, Med-PaLM, performs encouragingly, but remains inferior to clinicians. We show that comprehension, knowledge recall and reasoning improve with model scale and instruction prompt tuning, suggesting the potential utility of LLMs in medicine. Our human evaluations reveal limitations of today’s models, reinforcing the importance of both evaluation frameworks and method development in creating safe, helpful LLMs for clinical applications. Med-PaLM, a state-of-the-art large language model for medicine, is introduced and evaluated across several medical question answering tasks, demonstrating the promise of these models in this domain.
Radiological reporting has generated large quantities of digital content within the electronic health record, which is potentially a valuable source of information for improving clinical care and supporting research. Although radiology reports are stored for communication and documentation of diagnostic imaging, harnessing their potential requires efficient and automated information extraction: they exist mainly as free-text clinical narrative, from which it is a major challenge to obtain structured data. Natural language processing (NLP) provides techniques that aid the conversion of text into a structured representation, and thus enables computers to derive meaning from human (ie, natural language) input. Used on radiology reports, NLP techniques enable automatic identification and extraction of information. By exploring the various purposes for their use, this review examines how radiology benefits from NLP. A systematic literature search identified 67 relevant publications describing NLP methods that support practical applications in radiology. This review takes a close look at the individual studies in terms of tasks (ie, the extracted information), the NLP methodology and tools used, and their application purpose and performance results. Additionally, limitations, future challenges, and requirements for advancing NLP in radiology will be discussed.
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.