20
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Host plant resistance to thrips (Thysanoptera: Thripidae) – current state of art and future research avenues

      ,
      Current Opinion in Insect Science
      Elsevier BV

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references61

          • Record: found
          • Abstract: found
          • Article: not found

          Domestication impacts on plant-herbivore interactions: a meta-analysis.

          For millennia, humans have imposed strong selection on domesticated crops, resulting in drastically altered crop phenotypes compared with wild ancestors. Crop yields have increased, but a long-held hypothesis is that domestication has also unintentionally decreased plant defences against herbivores. To test this hypothesis, we conducted a phylogenetically controlled meta-analysis comparing insect herbivore resistance and putative plant defence traits between crops and their wild relatives. Our database included 2098 comparisons made across 73 crops in 89 studies. We found that domestication consistently reduced plant resistance to herbivores, although the magnitude of the effects varied across plant organs and depended on how resistance was measured. However, domestication had no consistent effects on the specific plant defence traits underlying resistance, including secondary metabolites and physical feeding barriers. The values of these traits sometimes increased and sometimes decreased during domestication. Consistent negative effects of domestication were observed only when defence traits were measured in reproductive organs or in the plant organ that was harvested. These results highlight the complexity of evolution under domestication and the need for an improved theoretical understanding of the mechanisms through which agronomic selection can influence the species interactions that impact both the yield and sustainability of our food systems.This article is part of the themed issue 'Human influences on evolution, and the ecological and societal consequences'.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found
            Is Open Access

            The New Integrated Pest Management Paradigm for the Modern Age

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Invasion Biology, Ecology, and Management of Western Flower Thrips.

              Western flower thrips, Frankliniella occidentalis, first arose as an important invasive pest of many crops during the 1970s-1980s. The tremendous growth in international agricultural trade that developed then fostered the invasiveness of western flower thrips. We examine current knowledge regarding the biology of western flower thrips, with an emphasis on characteristics that contribute to its invasiveness and pest status. Efforts to control this pest and the tospoviruses that it vectors with intensive insecticide applications have been unsuccessful and have created significant problems because of the development of resistance to numerous insecticides and associated outbreaks of secondary pests. We synthesize information on effective integrated management approaches for western flower thrips that have developed through research on its biology, behavior, and ecology. We further highlight emerging topics regarding the species status of western flower thrips, as well as its genetics, biology, and ecology that facilitate its use as a model study organism and will guide development of appropriate management practices.
                Bookmark

                Author and article information

                Journal
                Current Opinion in Insect Science
                Current Opinion in Insect Science
                Elsevier BV
                22145745
                June 2021
                June 2021
                : 45
                : 28-34
                Article
                10.1016/j.cois.2020.11.011
                33278641
                447a928a-f2e3-4517-aea8-ee08f172dabc
                © 2021

                https://www.elsevier.com/tdm/userlicense/1.0/

                http://creativecommons.org/licenses/by-nc-nd/4.0/

                History

                Comments

                Comment on this article