5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Sixty-fifth Supplement to the American Ornithological Society’s Check-list of North American Birds

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references163

          • Record: found
          • Abstract: found
          • Article: not found

          The drivers of tropical speciation.

          Since the recognition that allopatric speciation can be induced by large-scale reconfigurations of the landscape that isolate formerly continuous populations, such as the separation of continents by plate tectonics, the uplift of mountains or the formation of large rivers, landscape change has been viewed as a primary driver of biological diversification. This process is referred to in biogeography as vicariance. In the most species-rich region of the world, the Neotropics, the sundering of populations associated with the Andean uplift is ascribed this principal role in speciation. An alternative model posits that rather than being directly linked to landscape change, allopatric speciation is initiated to a greater extent by dispersal events, with the principal drivers of speciation being organism-specific abilities to persist and disperse in the landscape. Landscape change is not a necessity for speciation in this model. Here we show that spatial and temporal patterns of genetic differentiation in Neotropical birds are highly discordant across lineages and are not reconcilable with a model linking speciation solely to landscape change. Instead, the strongest predictors of speciation are the amount of time a lineage has persisted in the landscape and the ability of birds to move through the landscape matrix. These results, augmented by the observation that most species-level diversity originated after episodes of major Andean uplift in the Neogene period, suggest that dispersal and differentiation on a matrix previously shaped by large-scale landscape events was a major driver of avian speciation in lowland Neotropical rainforests.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Trans-equatorial migration and mixing in the wintering areas of a pelagic seabird

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The evolution of a tropical biodiversity hotspot

              The tropics are the source of most biodiversity yet inadequate sampling obscures answers to fundamental questions about how this diversity evolves. We leveraged samples assembled over decades of fieldwork to study diversification of the largest tropical bird radiation, the suboscine passerines. Our phylogeny, estimated using data from 2389 genomic regions in 1940 individuals of 1287 species, reveals that peak suboscine species diversity in the Neotropics is not associated with high recent speciation rates but rather with the gradual accumulation of species over time. Paradoxically, the highest speciation rates are in lineages from regions with low species diversity, which are generally cold, dry, unstable environments. Our results reveal a model in which species are forming faster in environmental extremes but have accumulated in moderate environments to form tropical biodiversity hotspots.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                Ornithology
                Oxford University Press (OUP)
                0004-8038
                2732-4613
                July 01 2024
                July 19 2024
                July 19 2024
                July 01 2024
                July 19 2024
                July 19 2024
                : 141
                : 3
                Article
                10.1093/ornithology/ukae019
                40556688-9f1f-4ab8-9785-a0849591ddc3
                © 2024
                History

                Comments

                Comment on this article

                scite_
                19
                0
                0
                0
                Smart Citations
                19
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content2,556

                Most referenced authors755