8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Twenty-first aminoacyl-tRNA synthetase-suppressor tRNA pairs for possible use in site-specific incorporation of amino acid analogues into proteins in eukaryotes and in eubacteria

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Two critical requirements for developing methods for the site-specific incorporation of amino acid analogues into proteins in vivo are (i) a suppressor tRNA that is not aminoacylated by any of the endogenous aminoacyl-tRNA synthetases (aaRSs) and (ii) an aminoacyl-tRNA synthetase that aminoacylates the suppressor tRNA but no other tRNA in the cell. Here we describe two such aaRS-suppressor tRNA pairs, one for use in the yeast Saccharomyces cerevisiae and another for use in Escherichia coli. The "21st synthetase-tRNA pairs" include E. coli glutaminyl-tRNA synthetase (GlnRS) along with an amber suppressor derived from human initiator tRNA, for use in yeast, and mutants of the yeast tyrosyl-tRNA synthetase (TyrRS) along with an amber suppressor derived from E. coli initiator tRNA, for use in E. coli. The suppressor tRNAs are aminoacylated in vivo only in the presence of the heterologous aaRSs, and the aminoacylated tRNAs function efficiently in suppression of amber codons. Plasmids carrying the E. coli GlnRS gene can be stably maintained in yeast. However, plasmids carrying the yeast TyrRS gene could not be stably maintained in E. coli. This lack of stability is most likely due to the fact that the wild-type yeast TyrRS misaminoacylates the E. coli proline tRNA. By using error-prone PCR, we have isolated and characterized three mutants of yeast TyrRS, which can be stably expressed in E. coli. These mutants still aminoacylate the suppressor tRNA essentially quantitatively in vivo but show increased discrimination in vitro for the suppressor tRNA over the E. coli proline tRNA by factors of 2.2- to 6.8-fold.

          Related collections

          Most cited references33

          • Record: found
          • Abstract: found
          • Article: not found

          Expansion of the genetic code: site-directed p-fluoro-phenylalanine incorporation in Escherichia coli.

          R Furter (1998)
          Site-directed incorporation of the amino acid analogue p-fluoro-phenylalanine (p-F-Phe) was achieved in Escherichia coli. A yeast suppressor tRNA(Phe)amber/phenylalanyl-tRNA synthetase pair was expressed in an analogue-resistant E. coli strain to direct analogue incorporation at a programmed amber stop codon in the DHFR marker protein. The programmed position was translated to 64-75% as p-F-Phe and the remainder as phenylalanine and lysine. Depending on the expression conditions, the p-F-Phe incorporation was 11-21-fold higher at the programmed position than the background incorporation at phenylalanine codons, showing high specificity of analogue incorporation. Protein expression yields of 8-12 mg/L of culture, corresponding to about two thirds of the expression level of the wild-type DHFR protein, are sufficient to provide fluorinated proteins suitable for 19F-NMR spectroscopy and other sample-intensive methods. The use of a nonessential "21st" tRNA/synthetase pair will permit incorporation of a wide range of analogues, once the synthetase specificity has been modified accordingly.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Progress toward the evolution of an organism with an expanded genetic code.

            Several significant steps have been completed toward a general method for the site-specific incorporation of unnatural amino acids into proteins in vivo. An "orthogonal" suppressor tRNA was derived from Saccharomyces cerevisiae tRNA2Gln. This yeast orthogonal tRNA is not a substrate in vitro or in vivo for any Escherichia coli aminoacyl-tRNA synthetase, including E. coli glutaminyl-tRNA synthetase (GlnRS), yet functions with the E. coli translational machinery. Importantly, S. cerevisiae GlnRS aminoacylates the yeast orthogonal tRNA in vitro and in E. coli, but does not charge E. coli tRNAGln. This yeast-derived suppressor tRNA together with yeast GlnRS thus represents a completely orthogonal tRNA/synthetase pair in E. coli suitable for the delivery of unnatural amino acids into proteins in vivo. A general method was developed to select for mutant aminoacyl-tRNA synthetases capable of charging any ribosomally accepted molecule onto an orthogonal suppressor tRNA. Finally, a rapid nonradioactive screen for unnatural amino acid uptake was developed and applied to a collection of 138 amino acids. The majority of glutamine and glutamic acid analogs under examination were found to be uptaken by E. coli. Implications of these results are discussed.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Effects of surrounding sequence on the suppression of nonsense codons.

              Using a lacI-Z fusion system, we have determined the efficiency of suppression of nonsense codons in the I gene of Escherichia coli by assaying beta-galactosidase activity. We examined the efficiency of four amber suppressors acting on 42 different amber (UAG) codons at known positions in the I gene, and the efficiency of a UAG suppressor at 14 different UGA codons. The largest effects were found with the amber suppressor supE (Su2), which displayed efficiencies that varied over a 35-fold range, and with the UGA suppressor, which displayed a 170-fold variation in efficiency. Certain UGA sites were so poorly suppressed (less than 0.2%) by the UGA suppressor that they were not originally detected as nonsense mutations. Suppression efficiency can be correlated with the sequence on the 3' side of the codon being suppressed, and in many cases with the first base on the 3' side. In general, codons followed by A or G are well suppressed, and codons followed by U or C are poorly suppressed. There are exceptions, however, since codons followed by CUG or CUC are well suppressed. Models explaining the effect of the surrounding sequence on suppression efficiency are considered in the Discussion and in the accompanying paper.
                Bookmark

                Author and article information

                Journal
                Proceedings of the National Academy of Sciences
                Proceedings of the National Academy of Sciences
                Proceedings of the National Academy of Sciences
                0027-8424
                1091-6490
                February 27 2001
                January 23 2001
                February 27 2001
                : 98
                : 5
                : 2268-2273
                Article
                10.1073/pnas.031488298
                30127
                11226228
                3d6bf840-8a5c-4f1f-9863-d9a0e87cb39d
                © 2001
                History

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content1,380

                Cited by11

                Most referenced authors526