25
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Hybrid catalysts for photoelectrochemical reduction of carbon dioxide: a prospective review on semiconductor/metal complex co-catalyst systems

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references51

          • Record: found
          • Abstract: found
          • Article: not found

          Wireless solar water splitting using silicon-based semiconductors and earth-abundant catalysts.

          We describe the development of solar water-splitting cells comprising earth-abundant elements that operate in near-neutral pH conditions, both with and without connecting wires. The cells consist of a triple junction, amorphous silicon photovoltaic interfaced to hydrogen- and oxygen-evolving catalysts made from an alloy of earth-abundant metals and a cobalt|borate catalyst, respectively. The devices described here carry out the solar-driven water-splitting reaction at efficiencies of 4.7% for a wired configuration and 2.5% for a wireless configuration when illuminated with 1 sun (100 milliwatts per square centimeter) of air mass 1.5 simulated sunlight. Fuel-forming catalysts interfaced with light-harvesting semiconductors afford a pathway to direct solar-to-fuels conversion that captures many of the basic functional elements of a leaf.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Toward solar fuels: photocatalytic conversion of carbon dioxide to hydrocarbons.

            The past several decades have seen a significant rise in atmospheric carbon dioxide levels resulting from the combustion of hydrocarbon fuels. A solar energy based technology to recycle carbon dioxide into readily transportable hydrocarbon fuel (i.e., a solar fuel) would help reduce atmospheric CO2 levels and partly fulfill energy demands within the present hydrocarbon based fuel infrastructure. We review the present status of carbon dioxide conversion techniques, with particular attention to a recently developed photocatalytic process to convert carbon dioxide and water vapor into hydrocarbon fuels using sunlight.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Molecular approaches to the photocatalytic reduction of carbon dioxide for solar fuels.

              The scientific community now agrees that the rise in atmospheric CO(2), the most abundant green house gas, comes from anthropogenic sources such as the burning of fossil fuels. This atmospheric rise in CO(2) results in global climate change. Therefore methods for photochemically transforming CO(2) into a source of fuel could offer an attractive way to decrease atmospheric concentrations. One way to accomplish this conversion is through the light-driven reduction of carbon dioxide to methane (CH(4(g))) or methanol (CH(3)OH((l))) with electrons and protons derived from water. Existing infrastructure already supports the delivery of natural gas and liquid fuels, which makes these possible CO(2) reduction products particularly appealing. This Account focuses on molecular approaches to photochemical CO(2) reduction in homogeneous solution. The reduction of CO(2) by one electron to form CO(2)(*-) is highly unfavorable, having a formal reduction potential of -2.14 V vs SCE. Rapid reduction requires an overpotential of up to 0.6 V, due at least in part to the kinetic restrictions imposed by the structural difference between linear CO(2) and bent CO(2)(*-). An alternative and more favorable pathway is to reduce CO(2) though proton-assisted multiple-electron transfer. The development of catalysts, redox mediators, or both that efficiently drive these reactions remains an important and active area of research. We divide these reactions into two class types. In Type I photocatalysis, a molecular light absorber and a transition metal catalyst work in concert. We also consider a special case of Type 1 photocatalysis, where a saturated hydrocarbon links the catalyst and the light absorber in a supramolecular compound. In Type II photocatalysis, the light absorber and the catalyst are the same molecule. In these reactions, transition-metal coordination compounds often serve as catalysts because they can absorb a significant portion of the solar spectrum and can promote activation of small molecules. This Account discusses four classes of transition-metal catalysts: (A) metal tetraaza-macrocyclic compounds; (B) supramolecular complexes; (C) metalloporphyrins and related metallomacrocycles; (D) Re(CO)(3)(bpy)X-based compounds where bpy = 2,2'-bipyridine. Carbon monoxide and formate are the primary CO(2) reduction products, and we also propose bicarbonate/carbonate production. For comprehensiveness, we briefly discuss hydrogen formation, a common side reaction that occurs concurrently with CO(2) reduction, though the details of that process are beyond the scope of this Account. It is our hope that drawing attention both to current mechanistic hypotheses and to the areas that are poorly understood will stimulate research that could one day provide an efficient solution to this global problem.
                Bookmark

                Author and article information

                Journal
                JMCAET
                Journal of Materials Chemistry A
                J. Mater. Chem. A
                Royal Society of Chemistry (RSC)
                2050-7488
                2050-7496
                2014
                June 24 2014
                : 2
                : 37
                : 15228
                Article
                10.1039/C4TA02250E
                3affdbe1-8695-4cb0-b4ae-3053e43c5b78
                © 2014
                History

                Comments

                Comment on this article