12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      MEDOE: A Multi-Expert Decoder and Output Ensemble Framework for Long-tailed Semantic Segmentation

      Preprint
      , , , , ,

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Long-tailed distribution of semantic categories, which has been often ignored in conventional methods, causes unsatisfactory performance in semantic segmentation on tail categories. In this paper, we focus on the problem of long-tailed semantic segmentation. Although some long-tailed recognition methods (e.g., re-sampling/re-weighting) have been proposed in other problems, they can probably compromise crucial contextual information and are thus hardly adaptable to the problem of long-tailed semantic segmentation. To address this issue, we propose MEDOE, a novel framework for long-tailed semantic segmentation via contextual information ensemble-and-grouping. The proposed two-sage framework comprises a multi-expert decoder (MED) and a multi-expert output ensemble (MOE). Specifically, the MED includes several "experts". Based on the pixel frequency distribution, each expert takes the dataset masked according to the specific categories as input and generates contextual information self-adaptively for classification; The MOE adopts learnable decision weights for the ensemble of the experts' outputs. As a model-agnostic framework, our MEDOE can be flexibly and efficiently coupled with various popular deep neural networks (e.g., DeepLabv3+, OCRNet, and PSPNet) to improve their performance in long-tailed semantic segmentation. Experimental results show that the proposed framework outperforms the current methods on both Cityscapes and ADE20K datasets by up to 1.78% in mIoU and 5.89% in mAcc.

          Related collections

          Author and article information

          Journal
          16 August 2023
          Article
          2308.08213
          33d6dd04-72c0-4c9d-aa8f-d9123d84851e

          http://arxiv.org/licenses/nonexclusive-distrib/1.0/

          History
          Custom metadata
          18 pages, 9 figures
          cs.CV

          Computer vision & Pattern recognition
          Computer vision & Pattern recognition

          Comments

          Comment on this article